
Fast visualization of relevant portions
of large dynamic networks

Przemyslaw A.
Grabowicz

Institute for Cross-Disciplinary

Physics and Complex Systems

University of Balearic Islands

Luca Maria Aiello
Yahoo! Research Barcelona

Filippo Menczer
Center for Complex Networks

and Systems Research

Indiana University

ABSTRACT
Detecting and visualizing what are the most relevant changes

in an evolving network is still an open challenge in several

domains. We develop a fast algorithm that selects subsets

of nodes and edges that best represent an evolving graph

and visualize it by either creating a movie, or by streaming

it to an interactive network visualization tool. Our code,

that is already deployed in the movie generation tool of the

truthy.indiana.edu system, is limited in memory and pro-

cessor time usage.

1. INTRODUCTION
Recently, the availability of live data streams from online

social media motivated the development of interfaces to pro-

cess and visualize evolving graphs. Dynamic visualization is

supported by tools like GraphAEL [4], GleamViz [2], Gephi [1],

and GraphStream [3]. In particular, Gephi supports graph

streaming with a dedicated API based on JSON events and

enables the association of timestamps to each graph compo-

nent.

Nevertheless, not much work has been done so far about

developing information selection techniques for dynamic vi-

sualization of large graphs. In fact, for large networks in

which the rate of structural changes in time could be very

high, the task of determining the nodes and edges that can

constitute the salient structural properties of the network at

a certain time is crucial to produce meaningful visualizations

of the graph evolution.

We contribute to fill this gap by presenting a new tool for

graph visualization that:

• processes a chronological sequence of interactions be-

tween the graph nodes;

• dynamically selects the most relevant parts of the net-

work to visualize, based on a scoring function that

weights nodes and edges, removing no longer relevant

portion of the networks and emphasizing old nodes and

links that show fresh activity;

• produces a file representing the network evolution or,

alternatively, connects to the Gephi graph visualiza-

tion tool interface for live visualization of the evolving

graph;

• is fast enough to be applied to large live data streams

and visualize their representation in form of a network.

The submission package contains the source code of the mod-

ule with the related documentation, four dynamic graphs

datasets and the respective movies produced with our tool

for these datasets.

2. ALGORITHM



First, we introduce an algorithm that takes in input a chrono-

logical stream of interactions between nodes (i.e. network

edges) and converts it into a set of graph updates that ac-

count only for the most relevant part of the network. Then

we convert the sequence of the updates into image frames

that are combined into a movie depicting the network evo-

lution, or we feed the updates directly to Gephi Streaming

API to produce an interactive visualization of the evolving

network.

Input data format
The data required as input is an ordered chronological se-

quence of interactions between nodes. The interactions can

be either pairwise or cliques of interacting nodes. For in-

stance, the following input:

〈t1, n1, n2〉

〈t2, n1, n3, n4〉

represents the occurrence of an interaction between nodes n1

and n2 at epoch time t1 and an interaction between n1, n3,

and n4 at epoch time t2. Entries with more than two nodes

are interpreted as interactions happening between each pair

of members of the clique. A repetition of the same entries

at the same time encodes the intensity of interaction.

Differential network updates
The input data is processed by an algorithm that assigns

scores to nodes and edges. The score is initialized at 0 for

new nodes and edges, and it is updated for each line of the

input. When processing an input line 〈t, n1, ..., nk〉, the score

of each node ni|i ∈ {1, ..., k} is incremented by a value ∆i:

∆i =
2

k
.

Also the score of the edges (ni, nj)|i, j ∈ (1, ..., k) ∧ i 6= j

connecting nodes involved in the interaction are incremented

by δi,j :

δi,j =
2

k(k − 1)
.

In general the increments to the scores can be adapted to

the task, e.g. the above formulas give less importance to the

interactions happening in large cliques. Alternatively, for

one of our case studies we use another increments, defined

as:

∆i = 1, δi,j =
1

k
. (1)

To emphasize the most recent events and penalize stale ones,

a forgetting mechanism that decreases the scores of all edges

and nodes is run periodically every Fforget frames by mul-

tiplying the scores by a forgetting constant Cforget. The

algorithm outputs for the purpose of the visualization Nv

nodes with the highest scores, that are not singletons, and

edges that have scores above a certain treshold Smin
edge.

The algorithm has two phases: buffering and generation of

differential updates (see Figure 1). In the first stage, at

most Nb nodes with the highest scores are saved in a buffer

together with the interactions among them. Whenever a

new node, that does not appear in the buffer yet, is read

from the input, it replaces the node in the buffer with the

lowest value of the score. If an incoming input line involves

a node that is already in the buffer, then its score and scores

of its edges are increased by ∆i and δi,j , respectively. In the

second stage of the algorithm, the differential updates to the

visualized part of the network are created. To this end, the

Nv nodes in the buffer with the highest scores are selected.

The subgraph induced by the Nv nodes is compared with the

subgraph in the previous frame and a differential update is

created. Each of the differential updates corresponds to a

frame of the final visualization. The updates are created

every time interval Tframe. The time interval is fixed and

given at the beginning of the algorithm with the parameter

corresponding to time contraction. Value of this parameter

set to 10 means that the time will flow in the visualization

10 faster than in the data given as the input.

The differential updates are written in output in the form

of a JSON file formatted according to the Gephi Stream-



Figure 1: Simple diagram of main components of
the algorithm.

ing API (see bit.ly/16uGJKm). In short, each line of the

JSON file corresponds to one update of the graph structure

and contains a sequence of JSON objects that specify the

addition/deletion/attribute change of nodes and edges. We

introduced also a new type of object to deal with labels on

the screen (for example to write the date and time on the

screen).

Computational complexity

We call the numbers of buffered and visualized nodes Nb,

and Nv, respectively. The computational complexity of the

buffering stage of the algorithm is O(ENb), where E is the

total number of the pairwise interactions read (the cliques

are made of multiple pairwise interactions). The memory

usage scales as O(N2
b ). The second, frame-generating, stage

has computational complexity of O(FNvlog(Nv)), where F

is a total number of frames, that is a fraction of E and

commonly it is many times smaller than E. The memory

trace of this stage is very low and scales as O(Nv). We

summarize, that our method has computational complexity

linearly depending on number of interactions. Due to this

characteristic it is able to deal fast with extremely large

dynamical networks.

Visualization
The JSON stream produced by the algorithm is fed to a

python module that builds a representation of a dynamic

graph, namely an object that handles each of the updates

and reflects the changes to its current structure. The tran-

sition between the structural states of the graph determined

by received update can be depicted by a sequence of im-

age frames. In its initial state, the nodes in the network

are arranged according to the Fruchterman Rehingold graph

layout algorithm [5]. For each new incoming event, a new

layout is computed by running N iterations of the layout

algorithm, using the previous layout as a seed. Intermedi-

ate layouts are produced at each iteration of the algorithm.

Every intermediate layout is converted to a png frame that

is combined through the mencoder tool (bit.ly/zBryy) to

produce a movie that shows a smooth transition between

different states. To avoid nodes and edges to appear or

disappear abruptly in the movie, we use animations that

smoothly collapse dying nodes and expand new ones. A con-

figuration file allows to modify the default movie appearance

(e.g, resolution, colors) and some layout parameters.

3. CASE STUDIES
We test our method on datasets very diverse by nature, size

and time span. The movies produced from each dataset are

attached to the submission, and are described next.

Datasets
Twitter

We use data downloaded with the Twitter gardenhose ser-

vice, that covers around 10% of the tweet volume. We focus

on two events: the announcement of Osama Bin Laden’s

death and the Super Bowl 2013. We consider user-mentions

and hashtags as entities and their co-appearance in the same



Figure 2: Screenshots of the movies generated from the datasets: A) SuperBowl, B) Bin Laden’s death, C)
IMDB keywords, D) US Patents.

tweet as interactions between them.

The video about the announcement of Bin Laden’s death

shows the initial burst caused by @keithurbahn and how the

breaking news was being spread by users @brianstelter and

@jacksonjk. The video shows that later the news appears in

#cnn and is announced by @obama. The breaking of this

event in Twitter is described in detail in bit.ly/iPLoOc.

The second video shows how the anticipation of Super Bowl

steadily grows on early Sunday morning and afternoon, and

how it explodes when the game is about to start. Hashtags

related to #commercials and concerts e.g. #beyonce are

evident. Later, the impact of the #blackout is clearly visible.

The interest about the event drops rapidly after the game is

over and stays low during the next day.

Patents

We use a set of US patents that were issued between 2003

and 2004. We analyse the appearance of words in their ti-

tles. Whenever two words appear in a title of a patent we

create a link between them at the moment when the patent

was issued. Our video demonstrates the the topics of in-

terest at that period were “device”, “semiconductor”, and

“apparatus”.

IMDB movies

We use a dataset from IMDB of all movies, their year of

release and all the keywords assigned to them (from imdb.

to/11SZD). We create a network of keywords that are as-

signed to the same movies. For this dataset we use the

score increments defined by Equation 1, due to the fact

that the most popular movies have many keywords attached

to them. Our video shows interesting evolution of the key-

words from “character-name-in-title” and “based-on-novel”

(first half of 20th century), through “martial-arts” (70s and

80s) to “independent-film” (90s and later), ‘anime” and “sur-

realism’ (21st century)’.

Discussion



Period Nodes Edges Nodes
drawn

Bin Laden Death 2h 95k 198k 291
Super Bowl 2d 49k 1.1M 170

US patent title words 6m 24k 190k 76
IMDB movie keywords 107y 101k 220M 129

Table 1: Statistics on the experimental datasets

The datasets that we use are fairly diverse in time span,

topicality and size, as shown in Table 1. Nevertheless, our

method is able to narrow down the visualization to a mean-

ingful small subgraphs with less than 300 nodes for all cases.

The high performance of the algorithm makes it viable for

real-time visualizations of live and large data streams. On

a desktop machine the algorithm producing differential up-

dates of the network in the form of JSON files took less

than 20 seconds to finish for most of the datasets (80 for

IMDB). Given such performance, it is possible to visualize

in real-time highly popular events such as Super Bowl, that

produces up to 4500 tweets per second.

Figure 2 displays some frames of the videos. Other than

those experimental datasets, on-demand videos of Twitter

hashtag co-occurrences graphs, mention networks or retweet

networks can be generated with our tool via the Truthy

service (truthy.indiana.edu/movies). Hundreds of videos

have been already generated by the users of the platform

and are available to view. We note that our algorithm can

also stream its results directly to Gephi, and that the user

can interact with the dynamic network that it produces. In-

structions attached to the submission explain how to test

the Gephi visualization.

4. REFERENCES
[1] M. Bastian, S. Heymann, and M. Jacomy. Gephi: an

open source software for exploring and manipulating

networks. In ICWSM’09: Proceedings of the

International AAAI Conference on Weblogs and Social

Media. AAAI, 2009.

[2] W. Broeck, C. Gioannini, B. Goncalves, M. Quaggiotto,

V. Colizza, and A. Vespignani. The gleamviz

computational tool, a publicly available software to

explore realistic epidemic spreading scenarios at the

global scale. BMC Infectious Diseases, 11(1):37, 2011.

[3] A. Dutot, F. Guinand, D. Olivier, and Y. Pigné.

Graphstream: A tool for bridging the gap between

complex systems and dynamic graphs. In EPNACS:

Emergent Properties in Natural and Artificial Complex

Systems, 2007.

[4] C. Erten, P. Harding, S. Kobourov, K. Wampler, and

G. Yee. Graphael: Graph animations with evolving

layouts. In G. Liotta, editor, Graph Drawing, volume

2912 of Lecture Notes in Computer Science, pages

98–110. Springer Berlin, 2004.

[5] T. M. J. Fruchterman and E. M. Reingold. Graph

drawing by force-directed placement. Software Practice

and Experience, 21:1129–1164, November 1991.


