
A

Contextual tag inference
MICHAEL I. MANDEL, RAZVAN PASCANU, DOUGLAS ECK, and YOSHUA BENGIO, Université de
Montréal
LUCA M. AIELLO and ROSSANO SCHIFANELLA, Università di Torino
and FILIPPO MENCZER, Indiana University

This paper examines the use of two kinds of context to improve the results of content-based music taggers: the relationships
between tags and between the clips of songs that are tagged. We show that users agree more on tags applied to clips temporally

”closer” to one another; that conditional restricted Boltzmann machine models of tags can more accurately predict related tags
when they take context into account; and that when training data is ”smoothed” using context, support vector machines can

better rank these clips according to the original, unsmoothed tags and do this more accurately than three standard multi-label

classifiers.

Categories and Subject Descriptors: H.1.2 [Information Systems]: Models and Principles—Human information processing;
H.5.5 [Information Interfaces and Presentation]: Sound and Music Computing—Signal analysis, synthesis, and processing;
I.2.6 [Artificial Intelligence]: Learning—Connectionism and neural nets

General Terms: Experimentation, Performance

Additional Key Words and Phrases: Autotagging, clips, context, music, smoothing, tags

ACM Reference Format:
ACM Trans. Multimedia Comput. Commun. Appl. V, N, Article A (September 10), 17 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION

The amount of digital music available online is vast and increasing, not just as official releases on
record labels, but also as user generated content. Social tags and expert generated tag descriptions
allow users to find relevant content on Last.fm and Pandora.com, respectively, but they are time
consuming and expensive to collect. This paper discusses methods for automatically applying tags to
music (“autotagging”) to scale these data beyond the limitations of current manual processes.

Automatically generated tags can be used in three primary ways. They can be used to search by
description through a collection of music that has been automatically described. For example, a user
might want to find music that is “folk rock with male vocals and acoustic guitar.” They can be used to
browse through music with similar descriptions. For example, the same search could be constructed for a
user automatically from David Bowie’s “Space Oddity,” without having to articulate a specific description.

Author’s address: M. Mandel: University of Montreal, Department of Computer Science and Operations Research, CP 6128, Succ.
Centre-Ville, Montréal, Québec, H3C 3J7 CANADA
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the first page
or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to
lists, or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or
permissions@acm.org.
c© 10 ACM 1551-6857/10/09-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. V, No. N, Article A, Publication date: September 10.

A:2 • Michael Mandel et al.

Finally, they allow summarization of search results and other collections of music. Descriptions of
minutes or hours of music can be skimmed in seconds from which relevant candidates can be selected
for more thorough auditory screening.

This paper specifically discusses ways of taking context into account for improving autotagger training
data. Context in this case means some combination of the relationships between tags and the relation-
ships between 10-second clips of songs. Autotagging systems typically treat each tag as an independent
classification problem, and each clip of music as an independent data point. The models described in this
work take advantage of the relationships between tags and between clips to make better predictions of
tags.

After discussing previous work on autotagging and context in machine vision in Section 1.1, Sec-
tion 2 describes measurements of temporal context in an existing dataset. Section 2.1 then describes
what is to our knowledge the first use of Amazon’s Mechanical Turk service to collect autotagging
training data, and another examination of temporal context on these data. Section 3 then describes
the various language models employed to capture tag-tag contextual relationships, specifically, the
restricted Boltzmann machine (RBM), the conditional RBM (CRBM), and the doubly conditional RBM
(DCRBM), and information theoretic models of tag-tag similarity. Finally, Section 4 describes four
experiments conducted with these models on three different datasets, measuring their prediction of the
tags themselves and the improvement that they impart to support vector machine-based autotaggers.

1.1 Background

Researchers have investigated a number of music autotagging techniques over the last decade [Slaney
2002; Whitman and Rifkin 2002; Eck et al. 2008; Tingle et al. 2010]. Many current autotagging systems
(e.g. [Mandel and Ellis 2008]) treat each tag as a separate classification or ranking problem. This paper
generalizes this to the problem of predicting the presence or relevance of multiple tags simultaneously,
which is known as multi-label classification [Tsoumakas et al. 2010]. Many multi-label classification
algorithms have been proposed in the literature [Boutell et al. 2004; Kang et al. 2006; Tsoumakas and
Vlahavas 2007; Zhang and Zhou 2007; Han et al. 2010], including some explicitly designed for problems
in music [Trohidis et al. 2008].

One form of context that we explore in this paper is the exploitation of the relationships between
tags. This form of context has been explored by other authors with regards to music tagging, generally
as a second stage on top of independent tag predictors. Aucouturier et al. [2007] use a decision tree
learned from ground truth tags to enforce certain relationships between tag predictions and find that
it improves the precision of their taggers by an average of 5% and up to 15%. Bertin-Mahieux et al.
[2008] use a second layer of boosting on top of the individual autotaggers, but do not show a significant
improvement over the individual autotaggers. Miotto et al. [2010] use a Dirichlet mixture model to
smooth autotagger outputs, improving the performance of acoustic classifiers and outperforming a
support vector machine context model under a number of metrics.

The context model of Miotto et al. [2010] is inspired by context models from the vision literature,
specifically, Rasiwasia and Vasconcelos [2009]. The vision and image retrieval literature in general has
developed rather sophisticated notions of context that could be applied to music, such as Chen et al.
[2010]. Heitz and Koller [2008] characterize these different types of context well, describing their own
work as “stuff-thing” context, meaning that it uses background textures to inform its predictions of
the identities of foreground objects. This is contrasted against the “scene-thing” context of Murphy
et al. [2004], which first uses the “gist” of the image to classify the scene (e.g. office, hallway, street),
and then uses the scene predictions to inform priors on where and what objects should be expected.
Rabinovich et al. [2007] use a “thing-thing” context, where the identities of objects in scenes inform
one another. This is perhaps the most similar of the three to the context used in music tagging. Other
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. V, No. N, Article A, Publication date: September 10.

Contextual tag inference • A:3

visual contexts include the 3D geometric relationships between objects [Hoiem et al. 2008] and the
relationship between human pose and objects like sports equipment [Yao and Fei-Fei 2010]. In both of
these cases, object identification and context mutually reinforce each other.

These different types of visual context could have analogs in music. For example, a visual scene might
be analogous to a musical genre, as the priors over instruments, moods, etc. found in a song should
depend on the genre of the song. Just as an office scene has a high probability of including a computer
keyboard [Murphy et al. 2004], a rock song has a high probability of involving guitar. Similarly, just
as a street scene has a low prior on that same keyboard, a hip-hop song has a low prior on that same
guitar. In the same way, spatial context in images could correspond to temporal context in music and
the 3D geometric context of Hoiem et al. [2008] might correspond to a more nuanced notion of musical
structural context. Just as Hoiem et al. [2008] infer the 3D geometry of a scene from a 2D projection of
it and use it to perform better spatial reasoning about car and pedestrian detection, so might musical
structure be inferred from the temporal and musical surfaces and used to better inform tagging. This
paper will, however, restrict itself to a simpler notion of temporal context, defined simply according to
clip metadata: its offset into a track, the track, the album, and the artist. In fact, many of our models will
only consider the clip and track identities. While this is greatly simplified, it is still useful in modeling
the temporal context of music and tags.

Our examination of the relationships between the tags of different parts of the same song was enabled
by our collection of a new dataset using Amazon.com’s Mechanical Turk service. Mechanical Turk is
a marketplace where “requesters” post tasks that require some amount of basic human intelligence
along with a bounty for their completion. For example, we paid “turkers” $0.03-0.05 per clip that they
annotated with 5-10 tags. This marketplace allowed us to gather a new dataset relatively quickly and
cheaply using 5 clips from each song. Mechanical Turk has been used in the past for collecting natural
language processing data [Snow et al. 2008] and vision data [Sorokin and Forsyth 2008; Whitehill et al.
2009], but to our knowledge it has not been used for collecting tag data for music. Concurrently with
our work, Lee [2010] used Mechanical Turk to collect music similarity judgements.

This paper is based on work presented in our previous conference publication [Mandel et al. 2010]
and uses techniques described by Schifanella et al. [2010]. It applies the information theory-based
smoothing methods of the latter with the autotaggers of the former, and adds to this a new RBM-based
smoothing model. It also unifies the experiments presented in those papers and explicitly states the
ideas of context in music.

2. TEMPORAL TAG CONTEXT

How similar are the tags that different users apply to the same clip? Different clips from the same
track? Clips from different tracks on the same album? Clips from different albums from the same
artist? Clips from different artists? How does this similarity vary for clips from the same track as
the separation between the clips increases? We consider these questions and attempt to answer them
through a simple co-occurrence analysis of tags similar to the one performed by Schifanella et al. [2010].
This investigation of temporal context or the temporal “scale” of various tags and types of tags will
inform our tag language models.

Our existing MajorMiner dataset [Mandel and Ellis 2008] provides an excellent testbed for examining
many of these questions. In order to perform this analysis, we measured the number of co-occurring tags
in every pair of (user,clip) observations. We categorized each pair of observations by the relationships
between the users and the clips. For example, they could be from the same user, and the clips could
be from different tracks on the same album. Or they could be from different users but the same clip.
We then simply took the average number of co-occurring clips for each of these various categorizations.
Figure 1(a) shows the results of this analysis.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. V, No. N, Article A, Publication date: September 10.

A:4 • Michael Mandel et al.

Nothing Artist Album Track Clip
Shared

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
o
-o

cc
u
rr

in
g
 t

a
g
s

60 40 20 0 20 40 60
Separation (% of track)

0.40

0.45

0.50

0.55

0.60

0.65

C
o
-o

cc
u
rr

in
g
 t

a
g
s

a
b
o
v
e
 b

a
se

lin
e

Fig. 1. (a) Average number of tags shared by human intelligence tasks (HITs) from different users as a function of the “distance”
between the clips involved. (b) Average number of tags above the baseline shared by HITs from the same track as a function of
the separation between the clips measured as % of a track.

It can be seen from this plot that listeners describe clips that are “closer” together with the same
words more frequently. In this case, “closer” is in terms of the most specific scale of artists, albums,
tracks, and clips which two clips share. Imagine grouping all of the clips in a collection into tracks, then
all tracks into albums, then all albums into artists, and finally the artists in an arbitrary order. It is
in this arrangement that closer clips are described more similarly. Of course, this does not take into
account the ordering within any of these groupings, just the number of groupings that are shared.

Figure 1(a) quantifies the amount of noise that is introduced by assuming that tags at a certain scale
apply to all of its associated clips, the finest scale. For example, assuming that tags applied to an artist
apply equally well to all of the clips of music that the artist has released (as is done commonly, e.g.
[Bertin-Mahieux et al. 2008]) implies that up to 50% noise is being introduced in those tags. This is
because tags applied to clips from the same artist but different albums agree with each other only 50%
as frequently as tags applied to the same clip. Similarly, assuming that tags applied to a track apply
equally well to all of its clips means that up to 20% noise is being introduced.

2.1 Mechanical Turk data collection

While our existing MajorMiner dataset [Mandel and Ellis 2008] is sufficient for calculating these
co-occurrences down to the clip level, it lacks sufficient numbers of clips from the same track to answer
questions about the effect of separation within a single track. In order to investigate this property, we
needed to collect a new dataset, and instead of attempting to attract a new batch of players to the
MajorMiner game, we decided to pay users on Amazon’s Mechanical Turk,1 a marketplace for work the
requires human intelligence.

The work of describing the music collection was broken down into individual human intelligence
tasks (HITs), where in each HIT, users of the Mechanical Turk website were asked to listen to a
single clip from a song and describe its unique characteristics using between 5 and 15 words. The task
was free response, but to provide some guidance, we requested tags in 5 categories: Styles/Genres,
Vocals/Instruments, Overall sound/feel (global qualities like production and rhythm), Moods/Emotions,

1http://mturk.com

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. V, No. N, Article A, Publication date: September 10.

Contextual tag inference • A:5

and Other (sound alike artists, era, locale, song section, audience, activities, etc.). In order to avoid
biasing the turkers’ responses, no examples of tags were provided. Turkers were paid between $0.03
and $0.05 per clip, on which they generally spent about one minute.

The music used in the experiment was collected from music blogs that are indexed by the Hype
Machine.2 We downloaded the front page of each of the approximately 2000 blogs and recorded the
URLs of any mp3 files linked from them, a total of approximately 17,000 mp3s. We downloaded 1500 of
these mp3s at random, of which approximately 700 were available, error free, and at least 128 kbps
while still being below 10 megabytes (to avoid DJ sets, podcasts, etc). Of these, we selected 185 at
random. From each of these 185 tracks, we extracted five 10-second clips evenly spaced throughout
the track. We presented these clips to turkers in a random order, and generally multiple clips from the
same track were not available simultaneously. Each clip was seen by 3 different turkers.

Mechanical Turk gives the “requester” the opportunity to accept or reject completed HITs either
manually or automatically. In order to avoid spammers, we designed a number of rules for automatically
rejecting HITs based on analyses of each and all of a user’s HITs. Individual HITs were rejected if: (1)
they had fewer than 5 tags, (2) a tag had more than 25 characters, or (3) less than half of the tags were
found in a dictionary of Last.fm tags. All of a users’ HITs were rejected if: (1) that user had a very small
vocabulary compared to the number of HITs they performed (fewer than 1 unique tag per HIT), (2) they
used any tag too frequently (4 tags were used in more than half of their HITs), (3) they used more than
15% “stop words” like nice, music, genre, etc., or (4) at least half of their HITs were rejected for other
reasons. The list of stop words was assembled by hand from HITs that were deemed to be spam.

We posted a total of 925 clips, each of which was to be seen by 3 turkers for a total of 2775 HITs. We
accepted 2566 completed HITs and rejected 305 HITs. Some of the rejected HITs were re-posted and
others were never completed. The completed HITs included 15,500 (user, tag, clip) triples from 209
unique turkers who provided 2100 unique tags. Of these tags, 113 were used by at least 10 turkers,
making up 13,000 of the (user, tag, clip) triples. We paid approximately $100 for these data, although
this number doesn’t include additional rounds of data collection and questionnaire tuning.

2.1.1 Results. The data from Mechanical Turk provide an in-depth look at the relationships between
tags applied to clips in the same track. Figure 1(b) shows the normalized number of tag co-occurrences
for clips with different separations (in terms of percentage of the track). The normalization consists of
calculating the difference between the number of tags that co-occur for clips at a particular offset in the
same track versus those in different tracks. This normalization is necessary because different offsets
into tracks were generally heard by different turkers with their own idiosyncratic vocabularies. With
this normalization, it can be seen that there is a monotonic fall-off of tag co-occurrence from a peak at a
0% offset, supporting the data in Figure 1(a).

3. TAG LANGUAGE MODELS

Tags collected from human users are typically quite sparse. With Mechanical Turk, we were able to
collect tags for a small number of clips, each seen by 3 people with 17 (user, tag) pairs on average.
With the MajorMiner game, we were able to collect tags for a slightly larger number of clips, each seen
by about 7 people with 30 (user, tag) pairs on average. The Last.fm dataset that we are using (see
Section 4.1) has over 1.2 million tracks and 8.5 million (user, tag, track) triples, making an average of
only 7 (user, tag) pairs per track. Additionally, because popular songs are tagged much more frequently
than less popular songs, only 18% of songs have more than 7 (user, tag) pairs applied to them.

2http://hypem.com/list

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. V, No. N, Article A, Publication date: September 10.

A:6 • Michael Mandel et al.

For the popular tracks, it is not a problem to count the number of times each tag has been applied to
each clip, but for those 82% of tracks in the long tail, these tag data are quite noisy. One approach to
removing this noise is by treating the true tags as hidden data and inferring them from the observations
of tags that were applied. Such a tag language model should be able to identify both tags that should
have been applied, but weren’t, and tags that were applied but should not have been.

This paper discusses and tests two different kinds of tag language models, one based on an information
theoretic formulation of this inference [Schifanella et al. 2010], and the second based on restricted
Boltzmann machines (RBMs) [Mandel et al. 2010; Mandel et al. 2011]. While there are many more uses
for it, in this case, we only use the information theoretic model to learn the relationships between tags
in a tag-tag similarity matrix. The RBM models can learn this tag-tag context, and can additionally
incorporate the temporal context discussed in Section 2 through conditioning on “auxiliary variables.”

3.1 Information theoretic models

Inferring suitable hidden tags for resources (clips, tracks, albums and so on) with poor tagging informa-
tion and detecting noisy tags in the set of tags attached to a resource are tasks that can be achieved by
mining the global tag-to-tag similarity relationships occurring in the folksonomy.

Given a similarity score for every pair of tags, any set of tags associated with a specific resource can
be expanded by adding the tags that are most similar to the given tags, under the assumption that
tags which are strongly related to each other apply equally to the same resource. For instance, if rap
and hip-hop are found to be very similar and one resource is tagged with only rap, it is very likely
that hip-hop can be applied as well. Conversely, a noisy tag set can be reduced by wiping out those
tags that are not strongly related to the majority of other tags assigned to the same resource. Here, we
report a brief overview on how tag-to-tag similarity can be computed.

A widely accepted representation of folksonomies is based on a set of triples (u, r, t) representing a
user u marking a resource r with a tag t. Extracting meaningful similarity patterns occurring between
tags in such three-dimensional model requires a dimensionality reduction of the triple space, because
measures for relatedness and similarity are still not well developed for three-mode data. The process
of reducing a folksonomy to a two-mode relationship is known as aggregation [Markines et al. 2009].
Although the aggregation could be performed across any of the three dimension involved, in our setting
we are interested in calculating the similarity between pairs of tags by means of comparing the resources
they annotate; for this reason we aggregate on the user dimension. Doing so we obtain a description of
each tag as a weighted vector of resources.

As widely shown by previous work [Markines et al. 2009], the aggregation can be performed in various
ways, leading to as many different calculations of the weights in the resource vector. Simple examples of
aggregation are the projection aggregation, which outputs a binary vector denoting the set of resources
labeled by the tag, and the distributional aggregation, which produces a frequency-weighted vector
where resources are weighted according to how many times they have been tagged with the considered
tag.

Collapsing the two-dimensional tag-resource space into a weighted tag-to-tag relation is performed by
applying a semantic similarity measure (e.g., cosine similarity) to each pair of resource vectors. Previous
work addresses the application of different metrics in such context [Markines et al. 2009; Schifanella
et al. 2010]. Since most of these metrics leverage fundamental principles from the information theory, in
the following we will name information theoretic (or also InfTh for brevity) all the autotagging models
that use these metrics.
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. V, No. N, Article A, Publication date: September 10.

Contextual tag inference • A:7

(a) Conditional RBM (b) Doubly-conditional RBM

Fig. 2. Schematic diagrams of the two restricted Boltzmann machines under investigation. (a) RBM for tag smoothing conditioned
on just auxiliary information: user, track, clips identity, (b) RBM for tag smoothing conditioned on auxiliary information and tags
of other users. Filled circles show variables that are always observed, open circles show variables that are inferred at test time.

3.2 Restricted Boltzmann machines

This section describes the restricted Boltzmann machine (RBM) [Smolensky 1986] and conditional
variants. The RBM is an undirected graphical model that generatively models a set of input variables
y = (y1, . . . , yC)

T with a set of hidden variables h = (h1, . . . , hn)
T . Both y and h are typically binary,

although other distributions are possible. The model is “restricted” in that the dependency between
the hidden and visible variables is bipartite, meaning that the hidden variables are independent when
conditioned on the visible variables and vice versa. The joint probability density function is

p(y,h) =
1

Z
e−E(y,h) where E(y,h) = −hTUy − cTh− dTy and Z =

∑
y,h

e−E(y,h). (1)

The computation of Z, known as the partition function, is intractable because it is exponential either in
the number of visible or hidden variables. The marginal of y is p(y) = e−F(y)/Z, where F(y), the free
energy of y, is easy to compute as

F(y) = − log
∑
h

e−E(y,h) = −dTy −
∑
i

log(1 + eci+Uiy). (2)

The parameters of the model can be optimized using gradient descent to minimize the negative log
likelihood of data {yt} under this model

∂

∂θ
p(yt) = −Eh |yt

[
∂

∂θ
E(yt,h)

]
+ Ey,h

[
∂

∂θ
E(y,h)

]
. (3)

The first expectation in this expression is easy to compute, but the second is intractable and must be
approximated. One popular approximation for it is contrastive divergence [Hinton 2002], which uses a
small number of Gibbs sampling steps starting from the observed example to sample from p(y,h).

RBMs can be conditioned on other variables [Taylor et al. 2007]. In general, as shown in Figure 2(b),
both the hidden and visible units can be conditioned on other variables, u = (v1, . . . , vd)

T and a =
(a1, . . . , aA)

T , respectively. We refer to this model as the doubly-conditional RBM because of these two
conditioning variables. Including these interactions, the energy function becomes

E(y,h,u,a) = −hTUy − hTWu− yTV a− dTy − cTh (4)

and p(y,h |u,a) ∝ e−E(y,h,u,a). The vectors V a and Wu act like additional biases on y and h. By setting
to 0 the appropriate W or V matrix or u or a vector, the conditioning can apply to only the visible units,
as in Figure 2(a), which we will refer to as the conditional RBM in the rest of the paper, or only the
hidden units (not shown). For an observed data point yt,ut,at, the gradient of the log likelihood with

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. V, No. N, Article A, Publication date: September 10.

A:8 • Michael Mandel et al.

respect to a parameter θ becomes

∂

∂θ
log p(yt |ut,at) = −Eh |yt,ut,at

[
∂

∂θ
E(yt,h,ut,at)

]
+ Ey,h |ut,at

[
∂

∂θ
E(y,h,ut,at)

]
. (5)

Salakhutdinov et al. [2007] describe a conditional RBM used for collaborative filtering in which only
the hidden variables are conditioned on other variables. Mandel et al. [2010] describe a conditional
RBM used for modeling tags of the form of Figure 2(a), while this paper is the first to describe a doubly
conditional RBM used for modeling tags.

3.3 Conditional RBM tag language model

As shown in Figure 2, both the conditional RBM and doubly-conditional RBM (DCRBM) can be used
as tag language models. Both of them use the same variables and same representations for tags,
hidden representations, and auxiliary information including user, track, and clip identity. The DCRBM
additionally includes a representation of the tags that other users have applied to a particular clip.

The visible units in each RBM, y, represent the tags that have been applied to a particular clip by a
particular user in the form of a binary vector. These visible units are connected to the hidden units,
h, and units representing auxiliary information about the user and clip involved, a. Specifically, each
user is given their own auxiliary unit that indicates when it is that user applying the tags. This is a
so-called “one-hot” representation of user, as only one user unit is ever 1 at a tim. Additionally, however,
there are analogous representations in a for the clip that has been tagged and the track from which it
came. In this way, for example, taggings of the same clip by different users can share information, as
can taggings of different clips from the same track, and taggings of different clips by the same user. In
the case of the DCRBM, the u vector is the average of all of the other binary tag vectors that apply to
the same clip, providing the context of the tags other users have apply to the clip. The u vector is the
same length as the y vector, but the elements of u are continuous values between 0 and 1, while the
elements of y are strictly 0 or 1.

The various parameters learned by the model can capture specialized information about the relation-
ships between these variables. In particular, this can be encouraged by applying an L1 or L2 prior to the
W and V matrices during learning. When W and V are encouraged to be sparse, the biases d capture the
overall frequency of each tag, U captures information about the correlations between tags independent
of context, and W captures the relationships between tags in other taggings of the same clip. The V
matrix captures any deviations in relative frequency between tags due to context, for example if a user
tends to favor certain tags over others or if a particular clip tends to be described with tags that would
normally not coincide.

After a CRBM is trained, it is used to estimate p(y |a), which provides the smoothing. This is done by
drawing samples from the distribution for each particular setting of a, i.e. for each clip. Because of its
probabilistic formulation, the CRBM allows unobserved variables to be either imputed or marginalized
away. In particular, it is desirable to provide smoothed tags independent of a particular user’s biases,
so the user variables in a are marginalized away. Additionally, the DCRBM can be provided with an
average of all of the tag vectors for a particular clip in u, from which it estimates p(y |a,u).

4. EXPERIMENTS

This section describes a number of experiments performed to investigate the usefulness of the various
aspects of contextual tag language models. It first describes the datasets on which the models are tested,
then the features used to describe the audio, then the experiments themselves.
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. V, No. N, Article A, Publication date: September 10.

Contextual tag inference • A:9

4.1 Datasets

Three different datasets were employed in these experiments. They came from Mechanical Turk, the
MajorMiner game, and a crawl of Last.fm, roughly corresponding to small, medium, and large sizes.

The Mechanical Turk dataset is described in Section 2.1. This dataset had 925 clips, 2100 tags, 209
users, and 15,500 (user, clip, tag) triples. While it is the smallest dataset, the clips that compose it
were selected in such a way as to give the best picture of within-track tag variation. Because of its size,
we treated all (user, clip, tag) triples as true for the purposes of evaluation, even those that were not
verified by two users.

The medium-sized dataset comes from the MajorMiner game [Mandel and Ellis 2008]. It has 2600
clips, 6700 tags, 600 users, and 80,000 (user, clip, tag) triples. This dataset gives a nice balance between
size, diversity of music, and different scales of tagging. Its tags were collected at the clip level, and so
are very specific. Because approximately 7 users saw each clip, we accept as true (clip, tag) pairs on
which two different users agree. If only one user uses a (clip, tag) pair, we count it as an intermediate
state, neither true or false, for evaluation purposes.

The largest dataset comes from the website Last.fm. Schifanella et al. [2010] describe the design of a
crawler to gather the social tags describing individual tracks in Last.fm. While this is more fine-grained
tag data than is usually collected from Last.fm (e.g. [Bertin-Mahieux et al. 2008]), it is still not at the
clip level like the other two datasets. In order to evaluate clip-level classification scores, we assumed
that track-level tags applied to all of a track’s clips. In practice, we found that there was enough data to
simply select the 10-second clip from the exact center of each track to use as a representative of the
entire track. While the entire dataset has 1.2 million clips, 280,000 tags, 84,000 users, and 8.6 million
(user, clip, tag) triples, many of these only appear infrequently. Limiting the dataset to clips, tags, and
users that appear in 100 or more triples still retains 8900 users, 9400 tracks, 7100 tags, and 1.4 million
triples.

We pre-processed the data by transforming tags into a canonical form. We normalized the spelling of
decades and the word “and,” removed phrases such as “sounds like” from the beginning of tags, removed
words like “music,” “sound,” and “feel” from the ends of tags, and removed punctuation. We also stemmed
each word in the tag so that different forms of the same word would match each other, e.g. drums,
drum, and drumming.

4.2 Features

We use the audio features described by Mandel and Ellis [2008], which characterize the audio’s timbre
and rhythm. The features are all calculated over 10-second clips of songs. The timbral features are the
mean and unwrapped covariance matrix of 18-dimensional Mel frequency cepstral coefficients (MFCCs).
This feature captures information about music’s production and instrumentation. It specifically ignores
musical features like harmony and melody.

The rhythmic features could be called “envelope cepstrum.” The spectrogram is divided into a number
of frequency bands, and the FFT across time is taken of each band, yielding the modulation of each band.
The low frequency modulations are kept (up to 10 Hz), the log magnitude is taken, and then the DCT
along time is taken, yielding the “envelope cepstrum” in the different frequency bands. These bands are
then stacked on top of one another to create a 200-dimensional rhythmic feature vector. These features
capture information about the music’s beat, tempo, and rhythm, attempting to separate the various
signals from the drum kit: bass drum, snare, and hi-hat cymbal.

Both of these features are computed over all of the clips in the dataset and then normalized so that
each dimension has zero mean and unit variance. Each datapoint’s feature vector is then normalized
again so that it has unit norm. This second normalization minimizes the number of outliers caused

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. V, No. N, Article A, Publication date: September 10.

A:10 • Michael Mandel et al.

by the heavy tails of the feature dimension distributions, preventing them from dominating distance
calculations.

4.3 Experiment 1: predicting tags from context

This experiment investigates the predictive power of the various language models for tags and the
advantages that context provides for these models. It is purely textual in that it does not involve the
audio of the music at all, just the tags, tagging information, user information, and music metadata.

All three of the datasets described in Section 4.1 can be used in a leave-one-out tag prediction task.
In this task, the relative probability of a novel observation is compared to that of the same observation
with one bit flipped (one tag added or deleted). If the model has captured important structure in the
data, then it will judge the true observation to be more likely than the bit-flipped version of it. This
ratio is directly connected to the so-called pseudo-likelihood of the test set [Besag 1975]. Because it is
a ratio of probabilities, it does not require the computation of the partition function, Z, which is very
computationally intensive. Mathematically, the pseudo-likelihood is defined as

PL(v | a) ≡
∏
i

p(vi | v\i, a) =
∏
i

p(v | a)
p(v | a) + p(ṽi | a)

(6)

where vi is the ith visible unit, v\i is all of the visible units except for the ith unit, and ṽi is the
observation v with the ith bit flipped. Even though our observation vectors are generally very sparse
(∼4% of the bits were 1s), the 1s are more important than the 0s, so we compute the average log
pseudo-likelihood over the 1s and 0s separately and then average those two numbers together. This
provides a better indication of whether the model can properly account for the tags that are present,
and diminishes the importance of the tags that aren’t present.

This leave-one-out tag prediction can be done with any model that computes the likelihood of tags.
Thus we can train models with different combinations of auxiliary variables, or different structures
entirely, as long as they can predict the likelihood of novel data. A baseline comparison to all of our
RBMs is a factored model that estimates the probability of each tag independently from training data
and then measures the likelihood of each tag independently on test data. Because of the independence
of the variables, in this case the pseudo-likelihood is identical to the true likelihood.

We performed this experiment with the textual component of these three datasets, dividing the data
60-20-20 into training, validation, and test sets. The observations were shuffled, but then rearranged
slightly to ensure that all of the auxiliary classes appeared at least once in the training set to avoid
“out-of-vocabulary” problems. This experiment only used the singly-conditional RBM for clarity, as
the doubly-conditional RBM has very different pseudo-likelihoods due to its being conditioned on tag
data. We ran a grid search over the number of hidden units, the learning rate, and the regularization
coefficients using only the track-based auxiliary variables, those with the most even coverage. This grid
search involved training approximately 500 different models, each taking 10 minutes on average. We
selected the system with the best hyperparameters based on the pseudo-likelihood of the validation
dataset. Once we had selected reasonable hyperparameters, we ran experiments using all combinations
of the auxiliary variables with the other hyperparameters held constant. Five different random divisions
of the data allowed the computation of standard errors.

The log pseudo-likelihoods of the test datasets under these systems are shown in Table I. The
results are not strictly comparable across datasets because they involved slightly different numbers of
visible units. The results are shown on a per-bit basis, however, to facilitate comparison. These results
show first that non-conditional restricted Boltzmann machines (rows with three −s) are much more
effective than the factored models at modeling test data. This is because in addition to modeling the
relative frequencies of tags, the RBM models the relationships between tags through its hidden units.
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. V, No. N, Article A, Publication date: September 10.

Contextual tag inference • A:11

Table I. Average per-bit log pseudo-likelihood (less
negative is better) for restricted Boltzmann machines

conditioned on different types of auxiliary
information. A + indicates that the auxiliary

information was present, a − indicates that it was
absent. The baseline system is a factored model

evaluated in the same way.

Auxiliary info
Dataset User Track Clip log(PL)±stderr

MajorMiner + + + −0.9179±0.0088

MajorMiner + + − −0.9189±0.0070

MajorMiner + − − −0.9416±0.0074
MajorMiner − − − −1.0431±0.0095

MajorMiner baseline −1.4029±0.0024

Mech. Turk + + − −0.893 ± 0.015
Mech. Turk + − − −0.904 ± 0.013

Mech. Turk + + + −0.914 ± 0.012

Mech. Turk − − − −1.039 ± 0.013
Mech. Turk baseline −1.300 ± 0.007

Conditioning the RBM on auxiliary information (rows with at least one +) further improves the pseudo-
likelihoods. Specifically, it seems that the most useful auxiliary variable is the identity of the user,
but the identity of the track helps as well. Including clip information is slightly detrimental, although
not statistically significantly so, possibly because it introduces a large number of extra parameters to
estimate in the Wa matrix from few observations.

4.4 Experiment 2: information theoretic smoothing

It is possible to exploit the tag-tag similarity relationship derived from the information theoretic model
defined in Section 3.1 to improve the autotagger’s prediction accuracy through a process of remodulation
of the tag scores that we call smoothing. The idea behind this kind of smoothing is that the weighted
tag vectors can be remodulated through a redistribution of scores to increase the weight of the most
relevant tags and to minimize those of the noisy ones.

The smoothing procedure can be reasonably applied in pre-processing on the tag vectors used in the
learning set as well as in post-processing on the autotagger output. Pre-smoothing is aimed at refining
the autotagger input to improve learning when the considered clips are poorly or noisily tagged, while
post-smoothing is used to adjust the tag prediction to highlight the most relevant tags or to bring out
relevant tags that have not been detected by the autotagger. The same smoothing algorithm is used in
both pre-processing and post-processing phases, modulo the normalization of the tag vectors; in the
following we outline the detail of the main smoothing steps.

Given a tag vector of weights W = [w1, ..., wM] corresponding to tags T = {t1, ..., tM}, the first step of
the smoothing is to scale down the distribution of scores by a scale factor α ∈ [0, 1], simply recurring to
the scalar product (1−α) ·W =W ′. The overall weight wα =

∑M
i=1 α ·wi that is deducted from the score

vector is then redistributed among those tags that are found to be similar to the existing tags, according
to the tag-tag similarity relationship. Accordingly to the techniques described in Section 3.1, a tag-tag
similarity matrix is calculated for all the pairs among the N most popular tags that mark all the clips
in the dataset except the clip for which the autotagging is being made. For each tag ti ∈ T we extract
its K ≤ N most similar tags Tsim(ti) = {τ1, ..., τK}, together with their corresponding similarity values
Wsim(ti) = [wτ1 , ..., w

τ
K]. The contributions of the similarity vectors computed for all the tags are then

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. V, No. N, Article A, Publication date: September 10.

A:12 • Michael Mandel et al.

combined in a single smoothing vector S by means of a weighted vector sum where the contribution
from each tag ti is proportional to its original tag score wi:

S =

M∑
i=1

wi ·Wsim(ti). (7)

Depending on the set of tags in the Tsim(ti) vectors, the number of entries in the smoothing vector can
go up to K ×M , where M is the number of original tags associated with the considered clip. The weight
wα is then distributed among the tags in S, proportionally to their smoothing score; such contributions
are added to the scaled tag weight vector W ′, restoring its original overall weight and thus leading to
the final result of the smoothing.

The redistribution of weights performed by the smoothing can (1) introduce new related tags in the
original tag vector (2) increase the score of tags which are very related to many other tags given by the
users and (3) decrease the score of tags which are unrelated, on average, to the others. Note that this
process can result in a change of the weight ranking of the original tag score vector W .

For all the datasets we computed the tag-tag similarity matrix using the MIP similarity metric
using a distributional aggregation (see [Markines et al. 2009] for details), which appears to be the best
performing setting. We explored the effects of smoothing in both pre- and post-processing, for a wide
range of N , K, and α parameters. For the smallest datasets, MajorMiner and Mechanical Turk, we found
that the optimal smoothing parameters are N = 100,K = 25, α = 0.2, while for the Last.fm dataset
the best results are obtained using a bigger similarity matrix (N = 200) and assigning lower values
to the scale factor and the number of related tags (α = 0.1,K = 10). These changes can be interpreted
by considering that the Last.fm folksonomy has a broader variety of distinct tags if compared to the
other datasets; for this reason, restricting the similarity matrix size to less than 200 entries leaves out
many tags which are relevant for the smoothing. Conversely, reduced α and K values avoid giving too
much weight to noisy correlations which can be found inside the K-neighborhood of single tags in the
tag-tag similarity matrix. Intuitively, noisy correlations are more frequent in a folksonomy extracted
from a popular social network rather than in smaller triples sets created through on-purpose games
(MajorMiner) or by paid workers (Mechanical Turk).

We observe that, for every dataset, our information theoretic model with pre-processing smoothing
improves the accuracy of the baseline autotagger (see Figure 3). Surprisingly, the post-processing
smoothing, which is not included in that plot, does not provide any accuracy improvement. This
counterintuitive result could be due to the different distributions of weights of tags and autotags, that
may lead to a ineffective weights redistribution during post-processing. However, no clear-cut and
verifiable pattern that can shed light on the reason of this outcome has emerged from the analysis of
the datasets. In the next Section, the information theoretic smoothing performance is compared with
that of the other algorithms across the different datasets.

4.5 Experiment 3: smoothing on multiple datasets

This experiment compares the various smoothing algorithms on the various datasets. This comparison
is in terms of the area under the ROC curve (AUC) and precision-at-10 of rankings of the raw, user-
generated tags achieved by SVM classifiers trained using the smoothed tags. Specifically, for a given
smoothing algorithm and dataset, we generate a smoothed version of the tags for each clip using a
pre-trained instance of the algorithm with parameters selected to maximize the pseudo-likelihood of
held-out tags. Then for each tag, we train a support vector machine (SVM) using the same number of
positive and negative examples, namely the minimum of the number of positive examples, the number
of negative examples, and 100 examples. The SVM is then evaluated on all of the test examples and
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. V, No. N, Article A, Publication date: September 10.

Contextual tag inference • A:13

MTurk MajMin Last.fm
Dataset

0.50

0.55

0.60

0.65

0.70

0.75

A
v
g
 A

R
O

C

DCRBM
CRBM
InfTh
Raw
Chance

MTurk MajMin Last.fm
Dataset

0.00

0.05

0.10

0.15

0.20

0.25

A
v
g
 P

re
ci

si
o
n
-a

t-
1

0

DCRBM
CRBM
InfTh
Raw
Chance

(a) (b)
Fig. 3. (a) Area under the ROC curve and (b) Precision-at-10 averaged across tags for support vector machines trained on raw
and smoothed data and tested on the raw data.

the distance from the hyperplane used to rank them. This is repeated for each tag and the results are
averaged across tags. In this experiment, the various datasets used different numbers of tags. The
Mechanical Turk dataset used 66 tags, the MajorMiner dataset used 71 tags, and the Last.fm dataset
used 87 tags.

The AUC [Cortes and Mohri 2004] is a measure of ranking performance that summarizes the ability
of retrieval system to rank positive examples above negative examples, scoring them on a scale from
0.5 (chance level) to 1 (perfect ranking). Although certain problems with it have been pointed out by
Hand [Hand 2009], it is still a very popular and widely reported metric. Precision-at-10 is the proportion
of positive examples in the top 10 results returned by a retrieval system, ranging between the baseline
percentage of positive examples and 1. It is widely used in information retrieval, but although it
addresses the AUC problems reported by Hand, it too has shortcomings, such as low stability and
dependence on the total number of positive examples [Manning et al. 2008].

Results for this experiment can be seen in Figure 3. Almost all of the smoothings improve classification
performance. This is a relatively surprising result. After training on these modified tag datasets,
classifiers perform better when evaluated on the original dataset. Even though these datasets are
intentionally mismatched in this way, the smoothing still proves to be beneficial.

Relative performance between the algorithms is consistent across datasets, with the doubly-conditional
RBM performing the best, followed by the conditional RBM, the information-theoretic smoothing, and
finally the raw user-supplied tags. Of the datasets, all algorithms perform better on the MajorMiner
dataset than the other two. While this is clear from the AUC scores directly, for precision-at-10 the base-
line for MajorMiner is lower, meaning that the various classifiers score relatively better above it than on
the Mechanical Turk and Last.fm datasets. Two exceptions to these trends are the performance of the
CRBM on the Last.fm dataset, which is worse than expected under both metrics and the precision-at-10
of the SVMs trained on raw tags on the MajorMiner dataset, which is better than expected. Because of
the similarity in AUC and precision-at-10 results, and better stability of AUC, we focus on AUC results
for the rest of the experiments.

The Mechanical Turk dataset, having the fewest number of tags applied to each clip, provides the
least amount of certainty for each tagging. Thus these data are less reliable for training autotaggers and
have the lowest performance. The MajorMiner dataset has more tags per clip, averaging out inaccurate
tags and making agreement between users more apparent. Although the Last.fm dataset is the largest,

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. V, No. N, Article A, Publication date: September 10.

A:14 • Michael Mandel et al.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
good
dark
pop

happy
vocals

smooth
80s
jazz

percussion
classicrock

female
bass

malevocals
alternative

upbeat
love

male
indie

ambient
fun

piano
energetic

classic
fast

femalevocals
calm
soft

country
slow
rock
loud

guitar
angry
funk

instrumental
synthesizer

sad
electricguitar

blues
party

techno
club

electronica
folk
rap

hiphop
disco

dance
acousticguitar

acoustic

DCRBM
CRBM
InfTh
Raw
Chance

0.4 0.5 0.6 0.7 0.8 0.9 1.0
organ

keyboard
bass

voice
drum

80s
synth

solo
noise
vocal

trumpet
repetitive

pop
alternative

acoustic
british
guitar

funk
indie

female
strings

electronic
drummachine

male
ambient

end
saxophone

piano
fast

electronica
slow

country
punk
club
beat
folk
soft
rock
jazz

dance
trance
house

techno
metal
ballad

loud
quiet

hiphop
rap

silence

DCRBM
CRBM
InfTh
Raw
Chance

0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80
uk

british
favourite
favorites

awesome
progressiverock

90s
sexy

guitar
britpop

postpunk
experimental

american
indierock

indie
alternative

seenlive
00s
epic

newwave
rock
pop

alternativerock
hardrock

psychedelic
80s

melancholic
punk

electronica
electronic

grunge
heavymetal
melancholy

chill
metal

70s
triphop

beautiful
alternativemetal

piano
downtempo

sad
singersongwriter

dance
chillout

folk
ambient

60s
acoustic
mellow

DCRBM
CRBM
InfTh
Raw
Chance

(a) Mechanical Turk (b) MajorMiner (c) Last.fm

Fig. 4. Accuracy of autotaggers for the top 50 tags in the Mechanical Turk, MajorMiner, and Last.fm datasets. The autotaggers
were trained on raw and smoothed tags and tested on the raw, human generated tags.

having the most tags applied to each clip, these tags are only applied at the track level, not at the clip
level. Thus the assumption that tags apply to the clip in the middle of each track adds a certain amount
of noise to the tags, as discussed in Section 2, and decreases the reliability of these tags as training
data.

Figure 4 shows the per-tag breakdown of the performance of each algorithm on the 50 most popular
tags from each dataset. The tags on the y-axis are sorted by the performance of the SVM using the
doubly-conditional RBM smoothing, the best-performing autotagger.

On the Mechanical Turk dataset, shown in Figure 4(a), the DCRBM performs better than the other
algorithms on almost all tags, and the performance of the other systems appears to be relatively
correlated. Tags for which it performs much better than the other systems include party, funk, and
ambient. The one tag on which it performs much worse than the other systems is disco. It is difficult
to discern a pattern in these tags, but it seems like tags that are parts of clusters of related tags, i.e.
tags with other contextual relatives, are classified better by the DCRBM.

On the MajorMiner dataset, shown in Figure 4(b), the DCRBM outperforms the other systems on
most tags, and is not outperformed on any. Tags on which it performs particularly well are quiet, metal,
country, and alternative. On this dataset it seems more clear that it does well on genre tags and
other tags that have many contextual relatives, e.g. quiet.

On the Last.fm dataset, shown in Figure 4(c), the systems generally perform comparably. The DCRBM
does much better on a few tags, namely sad, chill, melancholic, and american. It performs worse
than the other systems on other tags, namely downtempo, heavymetal, and postpunk. In this case,
the tags that it does well on seem to be related to sad, of which there are many. The tags it does worse
on appear to be sub-genres that have fewer contextually-related tags and less co-occurrence with other
tags.
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. V, No. N, Article A, Publication date: September 10.

Contextual tag inference • A:15

0.3 0.4 0.5 0.6 0.7 0.8 0.9
dark
pop

happy
vocals

smooth
80s
jazz

percussion
classicrock

female
bass

malevocals
alternative

upbeat
love

male
indie

ambient
fun

piano
relaxed

energetic
classic

fast
femalevocals

calm
soft

country
slow
rock
loud

guitar
angry
funk

instrumental
synthesizer

sad
electricguitar

blues
party

techno
club

electronica
folk
rap

hiphop
disco

dance
acousticguitar

acoustic

DCRBM
CLP
MLkNN
RAkEL

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
organ

keyboard
bass

voice
drum

80s
synth

solo
noise
vocal

trumpet
repetitive

pop
alternative

acoustic
harmony

british
industrial

guitar
funk
indie

female
strings

electronic
male

ambient
end

saxophone
piano

fast
electronica

slow
country

punk
club
beat
folk
soft
rock
jazz

dance
trance
house

techno
metal
ballad

loud
quiet

rap
silence

DCRBM
CLP
MLkNN
RAkEL

MTurk MajMin
Dataset

0.50

0.55

0.60

0.65

0.70

0.75

A
v
g
 A

R
O

C

DCRBM
CLP
MLkNN
RAkEL

(a) Mechanical Turk (b) MajorMiner (c) Overall

Fig. 5. Accuracy of autotaggers compared to baseline multi-label classifiers MLkNN and RAkEL. (c) Overall average AUC (after
flipping AUCs below 0.5 to be above). AUC for each of the top 50 tags in the (a) Mechanical Turk and (b) MajorMiner datasets.

4.6 Experiment 4: Baseline systems

The final experiment compares the tag smoothing provided by our algorithms to three standard multi-
label classification algorithms, random k-labelsets (RAkEL), multi-label k-nearest neighbors (MLkNN),
and correlated label propagation (CLP). It uses the same data and procedures as experiment 3 above.
We used the implementations of RAkEL and MLkNN from the Mulan library for multi-label learning
[Tsoumakas et al. 2011] and implemented our own version of CLP.

RAkEL [Tsoumakas and Vlahavas 2007] is a meta-learning algorithm that transforms a multi-label
classification problem into a set of multi-label problems each containing fewer labels. These smaller
problems can then be treated as multi-class classification problems, treating the 2N different label
combinations as separate classes while avoiding the data sparsity of such an approach as N grows. We
used the default parameter of subsets of 3 labels, that were not necessarily disjoint from one another.
Because it is a meta-learner, we used it in conjunction with the default label powerset learner using the
C4.5 classifier.

MLkNN [Zhang and Zhou 2007] is an extension of k-nearest neighbor classification to multi-label
tasks. It estimates the probability of each label separately from the prevalence of each label among the
nearest training points to a test point. We used the default number of nearest neighbors, 10. Correlated
label propagation [Kang et al. 2006] is another extension of k-nearest neighbors to multi-label tasks.
It explicitly considers the higher order correlations between labels, however, by carefully designing
a cost function that can be optimized with a single pass through the labels, avoiding the exponential
explosion of the label powerset. We found that on a validation dataset, ordering the weights of each
class by increasing frequency and using the “exponential” kernel function performed best.

The results of these experiments can be seen in Figure 5. Figure 5(c) shows the average of the AUC
results for each tag. Note that for the purposes of averaging AUC scores of the baseline algorithms,
we took the complement of any AUC under 0.5 for a tag. The average AUC is still significantly below
that achieved by the combination of doubly-conditional RBM-based smoothing and SVM classification.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. V, No. N, Article A, Publication date: September 10.

A:16 • Michael Mandel et al.

The AUC for each of the top 50 tags can be seen in Figure 5(a) and (b) for the Mechanical Turk and
MajorMiner datasets, respectively. On the Mechanical Turk dataset, the DCRBM achieved a higher
AUC for a large majority of the tags except for the notable exceptions of disco, electronica, classical,
and energetic. On the MajorMiner dataset, the DCRBM performed better than the baseline algorithms
on all tags except for small differences on saxophone, ambient, repetitive, and electronic. This
evidence solidly supports the conclusion that DCRBM is able to out-perform other multi-label classifiers
on these tasks.

5. CONCLUSIONS

These experiments show that the autotagging of music becomes more accurate when augmented with
contextual information, both in terms of tag co-occurrence context and temporal context. Temporal
context can be employed because of the higher correlations shown to exist between the tags applied to
clips that are “closer” to one another temporally. Tag-tag context can be applied because of synonymy
and other contextual relationships between tags. These results are an important step in developing
music classification and categorization beyond a series of isolated tag problems and clip examples to a
more holistic approach that considers music and tags in their rich contextual relationships.

In addition to these ideas about context, this paper has contributed two new realizations of contextual
tag language models in the form of conditional restricted Boltzmann machines. These models achieve
better AUC performance than other state-of-the-art multi-label classifiers on this problem. It has also
shown the value for capturing tag-tag context of information theoretic models that have previously been
shown to accurately predict friendship links in social networks. Both of these modeling strategies could
be applied to images, video, or many other modalities in which social tags are useful, but frequently
sparse.

In the future, we would like to extend this work by modeling audio and tags jointly, instead of
requiring separate tag-smoothing and classifier training stages. One candidate for such a model is the
discriminative RBM [Larochelle and Bengio 2008; Mandel et al. 2011], which is closely related to the
conditional RBMs employed in this paper. We would also like to exploit unlabeled and weakly labeled
data, for example large collections of unlabeled music and large collections of text about music. RBMs
and particularly discriminative RBMs look quite promising for such tasks. Finally, we would like to
expand our use of information theoretic models beyond the tag-tag similarity to take advantage of the
further context and richness available in the full set of (user, item, tag) triples.

ACKNOWLEDGMENTS

We are grateful to Last.fm for making their data available. This work was partly supported by the
project Social Integration of Semantic Annotation Networks for Web Applications funded by National
Science Foundation award IIS-0811994.

REFERENCES

AUCOUTURIER, J., PACHET, F., ROY, P., AND BEURIV, A. 2007. Signal + context = better classification. In Proc. ISMIR. 425–430.
BERTIN-MAHIEUX, T., ECK, D., MAILLET, F., AND LAMERE, P. 2008. Autotagger: A model for predicting social tags from acoustic

features on large music databases. J. New Music Res. 37, 2, 115—135.
BESAG, J. 1975. Statistical analysis of non-lattice data. The Statistician 24, 3, 179–195.
BOUTELL, M., LUO, J., SHEN, X., AND BROWN, C. 2004. Learning multi-label scene classification1. Pattern Recognition 37, 9,

1757–1771.
CHEN, L., XU, D., TSANG, I. W., AND LUO, J. 2010. Tag-based web photo retrieval improved by batch mode re-tagging. 3440–3446.
CORTES, C. AND MOHRI, M. 2004. Auc optimization vs. error rate minimization. In NIPS 16, S. Thrun, L. Saul, and B. Schölkopf,

Eds. Vol. 16. MIT Press, Cambridge, MA.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. V, No. N, Article A, Publication date: September 10.

Contextual tag inference • A:17

ECK, D., LAMERE, P., BERTIN-MAHIEUX, T., AND GREEN, S. 2008. Automatic generation of social tags for music recommendation.
In NIPS 20, J. Platt, D. Koller, Y. Singer, and S. Roweis, Eds. MIT Press, Cambridge, MA, 385–392.

HAN, Y., WU, F., JIA, J., ZHUANG, Y., AND YU, B. 2010. Multi-task sparse discriminant analysis (mtsda) with overlapping
categories. In AAAI Conference on Artificial Intelligence. 469–474.

HAND, D. J. 2009. Measuring classifier performance: a coherent alternative to the area under the ROC curve. Mach. Learn. 77,
103–123.

HEITZ, G. AND KOLLER, D. 2008. Learning spatial context: Using stuff to find things. In ECCV, D. Forsyth, P. Torr, and
A. Zisserman, Eds. Lecture Notes in Computer Science Series, vol. 4. Springer Berlin / Heidelberg, Berlin, Heidelberg, 30–43.

HINTON, G. 2002. Training products of experts by minimizing contrastive divergence. Neural Computation 14, 1771–1800.
HOIEM, D., EFROS, A., AND HEBERT, M. 2008. Putting objects in perspective. International Journal of Computer Vision 80, 1,

3–15.
KANG, F., JIN, R., AND SUKTHANKAR, R. 2006. Correlated Label Propagation with Application to Multi-label Learning. In Intl.

Conf. on Comp. Vision and Pat. Rec. 1719–1726.
LAROCHELLE, H. AND BENGIO, Y. 2008. Classification using discriminative restricted Boltzmann machines. In Proc. ICML,

A. McCallum and S. Roweis, Eds. Omnipress, 536–543.
LEE, J. H. 2010. Crowdsourcing music similarity judgments using mechanical turk. In Proc. ISMIR. 183–188.
MANDEL, M., PASCANU, R., LAROCHELLE, H., AND BENGIO, Y. 2011. Autotagging music with conditional restricted boltzmann

machines. Online: http://arxiv.org/abs/1103.2832.
MANDEL, M. I., ECK, D., AND BENGIO, Y. 2010. Learning tags that vary within a song. In Proc. ISMIR. 399–404.
MANDEL, M. I. AND ELLIS, D. P. W. 2008. A web-based game for collecting music metadata. J. New Music Res. 37, 2, 151–165.
MANNING, C., RAGHAVAN, P., AND SCHÜTZE, H. 2008. Introduction to information retrieval. Cambridge University Press.
MARKINES, B., CATTUTO, C., MENCZER, F., BENZ, D., HOTHO, A., AND STUMME, G. 2009. Evaluating similarity measures for

emergent semantics of social tagging. In Proceedings of the 18th international conference on World wide web. ACM, 641–650.
MIOTTO, R., BARRINGTON, L., AND LANCKRIET, G. 2010. Improving auto-tagging by modeling semantic co-occurrences. In Proc.

ISMIR. 297–302.
MURPHY, K., TORRALBA, A., AND FREEMAN, W. T. 2004. Using the forest to see the trees: A graphical model relating features,

objects, and scenes. In NIPS 16, S. Thrun, L. Saul, and B. Schölkopf, Eds. MIT Press, Cambridge, MA.
RABINOVICH, A., VEDALDI, A., GALLEGUILLOS, C., WIEWIORA, E., AND BELONGIE, S. 2007. Objects in context. In Intl. Conf.

on Computer Vision. IEEE, 1–8.
RASIWASIA, N. AND VASCONCELOS, N. 2009. Holistic context modeling using semantic co-occurrences. In Intl. Conf. on Comp.

Vision and Pat. Rec. IEEE, Los Alamitos, CA, USA, 1889–1895.
SALAKHUTDINOV, R., MNIH, A., AND HINTON, G. 2007. Restricted Boltzmann machines for collaborative filtering. In Proc.

ICML. 791–798.
SCHIFANELLA, R., BARRAT, A., CATTUTO, C., MARKINES, B., AND MENCZER, F. 2010. Folks in folksonomies: Social link

prediction from shared metadata. In Proc. ACM Intl. Conf. on Web search and data mining. ACM, 271–280.
SLANEY, M. 2002. Semantic-audio retrieval. In Proc. ICASSP. Vol. 4.
SMOLENSKY, P. 1986. Information processing in dynamical systems: foundations of harmony theory. MIT Press.
SNOW, R., O’CONNOR, B., JURAFSKY, D., AND NG, A. 2008. Cheap and fast – but is it good? evaluating non-expert annotations

for natural language tasks. In Proc. Empirical Methods in NLP. 254–263.
SOROKIN, A. AND FORSYTH, D. 2008. Utility data annotation with amazon mechanical turk. In CVPR Workshops. 1–8.
TAYLOR, G., HINTON, G. E., AND ROWEIS, S. 2007. Modeling human motion using binary latent variables. In NIPS 19,

B. Schölkopf, J. Platt, and T. Hoffman, Eds. MIT Press, Cambridge, MA, 1345–1352.
TINGLE, D., KIM, Y. E., AND TURNBULL, D. 2010. Exploring automatic music annotation with “acoustically-objective” tags. In

Proc. Intl. Conf. on Multimedia inf. retr. ACM, 55–62.
TROHIDIS, K., TSOUMAKAS, G., KALLIRIS, G., AND VLAHAVAS, I. 2008. Multilabel classification of music into emotions. In Proc.

ISMIR.
TSOUMAKAS, G., KATAKIS, I., AND VLAHAVAS, I. 2010. Mining multi-label data. In Data Mining and Knowledge Discovery

Handbook, O. Maimon and L. Rokach, Eds. Chapter 34, 667–685.
TSOUMAKAS, G., VILCEK, J., SPYROMITROS, L., AND VLAHAVAS, I. 2011. MULAN: a java library for multi-label learning.

Journal of Machine Learning Research. Accepted for publication conditioned on minor revisions.
TSOUMAKAS, G. AND VLAHAVAS, I. 2007. Random k-Labelsets: An ensemble method for multilabel classification. In Proc. ECML.

Lecture Notes in Computer Science Series, vol. 4701. Springer Berlin / Heidelberg, Berlin, Heidelberg, Chapter 38, 406–417.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. V, No. N, Article A, Publication date: September 10.

A:18 • Michael Mandel et al.

WHITEHILL, J., RUVOLO, P., WU, T., BERGSMA, J., AND MOVELLAN, J. 2009. Whose vote should count more: Optimal integration
of labels from labelers of unknown expertise. In NIPS 22, Y. Bengio, D. Schuurmans, C. Williams, J. Lafferty, and A. Culotta,
Eds. 2035–2043.

WHITMAN, B. AND RIFKIN, R. 2002. Musical query-by-description as a multiclass learning problem. In IEEE Workshop on
Multimedia Signal Processing. 153–156.

YAO, B. AND FEI-FEI, L. 2010. Modeling mutual context of object and human pose in human-object interaction activities. In Intl.
Conf. on Comp. Vision and Pat. Rec. IEEE, 17–24.

ZHANG, M. AND ZHOU, Z. 2007. ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognition 40, 7, 2038–2048.

Received September 2010; revised March 2011; accepted August 2011

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. V, No. N, Article A, Publication date: September 10.

