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Community question answering (CQA) sites use a collaborative paradigm to satisfy complex information
needs. Although the task of matching questions to their best answers has been tackled for more than a
decade, the social question-answering practice is a complex process. The factors influencing the accuracy of
question-answer matching are many and hard to disentangle. We approach the task from an application-
oriented perspective, probing the space of several dimensions relevant to this problem: features, algorithms,
and topics. We gather under a learning to rank framework the most extensive feature set used in literature
to date, including 225 features from five different families. We test the power of such features in predicting
the best answer to a question on the largest dataset from Yahoo Answers used for this task so far (40M
answers) and provide a faceted analysis of the results along different topical areas and question types. We
propose a novel family of distributional semantics measures that most of the time can seamlessly replace
widely used linguistic similarity features, being more than one order of magnitude faster to compute and
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1. INTRODUCTION

Community question answering (CQA) sites such as Yahoo Answers, Stack Overflow,
or Ask.com have greatly contributed to the rise of the Social Web, as they allow com-
plex information needs to be satisfied through a collaborative paradigm. Articulated
queries submitted to those systems in form of questions are processed by the crowd
that generates and returns multiple possible answers. The quality of the responses
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is in turn evaluated by community members who manually match each question to
its best answer. This collective process can serve high-quality answers to queries that
are most often answered unsatisfactorily by conventional search engines [Morris et al.
2010]. CQA sites achieve effective results driven by the members’ altruism and by their
intrinsic motivation connected to the act of knowledge sharing [Nam et al. 2009; Jin
et al. 2013], possibly reinforced by ad hoc incentive mechanisms [Jain et al. 2009].

The whole question-answering (QA) practice in CQA sites relies almost entirely on
human actions, mainly because the process of knowledge gathering required to answer
a question is hard to automate, especially for very articulated queries [Lin and Katz
2003; Andrenucci and Sneiders 2005]. However, the task of matching a question to its
best answer from a corpus of human-generated responses—as well as the more general
task of ranking questions by quality—has received much attention in the past decade,
motivated by several practical applications.

First, automated best answer selection can make up for the shortcomings that hu-
man agents have when approaching this task. Users might not have enough time or
attention span to consider all of the answers or to carefully evaluate their quality.
Users may often designate as best the answers that are provided quickly and that
contain sufficient level of detail, but better answers can emerge as the life cycle of a
QA thread evolves, with early answers being improved and new responses being added
later in time [Anderson et al. 2012]. Some questions might also receive many answers
in a relatively short time, making it difficult to manually spot high-quality ones with
no support of an automated ranking system. In addition, like all open collaborative
platforms, CQA sites are open to abuse and user misconduct [Gyongyi et al. 2007;
Dearman and Truong 2010], to which the best answer selection process is not immune.

Second, reputation systems that are implemented on most CQA platforms could
benefit from mechanisms of objective quality assessment of answers. For example, in
sites where the best answer is elected by voting, the occurrence of the Matthew effect
(the “rich get richer” phenomenon) is hardly avoidable, leading to the emergence of
a single highly voted answer, among others. However, users’ answering to the same
question tends to be similar in terms of both expertise and delivered quality of their
answers [Anderson et al. 2012]. Therefore, rewarding mechanisms based on explicit
community feedback only can unfairly disadvantage participants responding later in
time.

Last, and perhaps most importantly, automatic best answer selection is a fundamen-
tal building block for social search services [Freyne et al. 2007; Evans and Chi 2008].
Social search is a very broad and multifaceted concept of which investigation is still
in its early stages. One of its important principles is to leverage the expertise of the
crowd and the knowledge it generates to satisfy complex information needs, also taking
into account the social context. Not surprisingly, the few services that have attempted
to implement this paradigm are smart variations of classic CQA systems [Horowitz
and Kamvar 2010]. In this context, best answer selection is key to match questions
to the most appropriate user-generated content across multiple knowledge bases and
more effectively compared to standard information retrieval approaches. Additionally,
machine assessment of the best answer is especially needed when the information is
drawn from structured corpora where no explicit quality feedback is given by the users
(e.g., topical discussion fora).

For these reasons, the tasks of best answer selection and ranking have been ex-
plored extensively over the past years (see Section 2 for an overview). Several ranking
and classification algorithms trained using multiple families of features have been
benchmarked against ground truths extracted from CQA portals. As new features
and algorithms were explored, the performance of the results increased quite steadily.
Nonetheless, the factors influencing the accuracy of question-answer matching are
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plenty and entangled, often making comparison between different approaches and
results difficult.

First, the feature space relevant to this task is vast and nontrivial to delve into, as
it includes signals from many different domains, including information retrieval, nat-
ural language processing (NLP), and network analysis. As a result, as we shall touch
on later, several research efforts have focused on selected feature subspaces in depth,
whereas fewer studies have attempted to provide a more holistic view. Comparison be-
tween different results is made even more problematic when platform-specific features
are considered, which might sensibly improve the performance in particular case stud-
ies but do not generalize well. On the other hand, as we shall discuss, not all feature cat-
egories that are informative for this type of task have yet been explored. Moreover, al-
though a variety of algorithms have been appraised in each of the two main approaches
to the problem—classification and ranking of best answers—systematical algorithmic
comparisons still remain more infrequent in the literature. Last, whereas previous
research has focused on maximizing target performance metrics (e.g., precision), the
computational complexity of feature extraction has been far less discussed, thus leaving
an open question about whether it is “worth the effort” to use some feature families.

In addition to the complexity of the algorithmic and feature scope, the nature of
the dataset is a major element that can steer experimental outcomes. CQA commu-
nities are broadly divided into focused, namely specialized on a well-defined area of
knowledge (e.g., computer programming), and nonfocused (or general purpose). Within
each community type, the questions submitted can belong to a variety of subtopics.
Depending on the area of knowledge and type of forum, the factors that determine a
good answer can vary greatly [Agichtein et al. 2008].

Addressing all of the preceding issues is clearly challenging. In this work, we con-
tribute to shed more light on some of these issues with a study that stretches both
in breadth and depth. Given a question in input, we address the task of ranking by
quality a set of available answers to maximize the likelihood that the best response for
the input query is returned on top.

To approach the problem from a very practical, application-oriented perspective,
we probe the space of several dimensions simultaneously—features, algorithms, and
topics—as no previous work has done before. We gathered from Yahoo Answers the
largest collection of question-answer pairs collected so far for this task (more than 7M
questions and nearly 40M answers), and we use the vastest selection of features ex-
plored up to now, including 225 signals belonging to five distinct families: text quality,
linguistic similarity, distributional semantics, user characteristics, and network struc-
ture. The distributional semantics features that we include are novel for this task, and
many of features (e.g., most of the network-based ones) have never been used in com-
bination with the others. All features that we consider abstract from the specific forum
type so that the model we learned could be trained on any CQA community where there
are textual questions and responses, with a best answer selected among them. More-
over, as Yahoo Answers has a general-purpose scope, we do not specialize our study
on a specific type of question-answer class. Instead, we investigate the performance of
feature families across four topical clusters of questions, automatically extracted from
simple and general features, and across two forms of questions that have been com-
monly considered in the literature: general type of questions and manner questions.
We rank answers with learning to rank (which has been shown to be a very effective
approach for ranking in this context [Surdeanu et al. 2011]) comparing a variety of
machine learning tools for training: logistic regression (LR), ListNet, RankSVM, and
random forests (RF).

To summarize, we believe that ours is the first study of best answer prediction (by
ranking) that is done at very large scale, on a general-purpose CQA forum, using the
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largest feature space to date (including novel features), and with a study on question
topics and question types and by exploration of several learning algorithms for the
learning to rank framework.

Main results and findings include the following:

—Textual features are the most informative ones. However, we find that the very
costly and widely used family of textual similarity features has almost no additional
predictive power when our newly proposed (and much faster to compute) set of
distributional semantics features is included in the model.

—Network features are somehow orthogonal to other feature types, yielding a sensible
increase in performance, albeit more modestly than other signals. The most effective
network features are not the ones that have been considered most extensively in
previous work but are instead those based on the concept of competition network.

—The feature informativeness varies quite dramatically across question types. Text
quality features are more suited to predict the best answer for factual and subjective
questions, whereas features from the user profile are more predictive for discussion
and poll-type questions.

—Our supervised model tops three of the latest yet already widely popular methods
for best answer prediction. The most effective combination of features reaches up to
26% performance gain on precision at 1 (P@1) over the best state-of-the-art methods.

The article is organized as follows. After a review of the related work (Section 2), we
first describe in detail the feature families that we consider (Section 3). We then describe
the learning to rank framework used to combine the features together (Section 4).
After introducing the Yahoo Answers dataset that we collected (Section 4.2), and the
baselines (Section 4.3), we outline the experimental results in Section 4.4. We provide
a discussion about the relative performance over the baselines, and a comparison
between feature sets and across question types, before the final remarks in Section 5.

2. RELATED WORK

Next, we discuss some background work in the field, describing studies on CQA and
expert findings, as well as some of the features that are most widely adopted in previous
approaches.

2.1. Community and Nonfactoid Question Answering

Several approaches have been developed for finding and ranking answers in CQA.
One of the earliest and most widely known approaches adopts different measures of

text quality to find the best answer for a given question [Agichtein et al. 2008]. Intrinsic
answer properties such as grammatical, syntactic, and semantic complexity, punctua-
tion, and typographical errors are adopted, along with question-answer similarity and
user expertise estimations. We build on that work by picking all of the features reported
as most effective, expanding them with new categories of features, and using a more
robust learning algorithm.

A consistent branch of this research field has focused on nonfactoid QA systems, es-
pecially with regard to Why and How questions. They often use CQA datasets for eval-
uations and adopt similar architectures to the CQA answer-ranking engines, although
focusing more on linguistic features. The importance of linguistic features for nonfac-
toid QA has been assessed in several studies [Verberne et al. 2008, 2010; Verberne
et al. 2011], showing how the adoption of semantic role labeling–based features [Bilotti
et al. 2010] and deep and shallow syntactical structures [Severyn and Moschitti 2012]
can improve the performance of a nonfactoid QA system. In our experiments, we also
adopt distributional linguistic features, adding even more levels of lexicalization to the
linguistic representation.
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Another line of approaches uses machine translation (MT) models to learn how to
reformulate a question into an answer so that the probability of the translation of
question into the answer can be calculated and the candidate answers can be ranked
accordingly [Berger et al. 2000; Echihabi and Marcu 2003; Riezler et al. 2007]. Recently,
matrix factorization algorithms have been adopted for the same goal [Zhou et al. 2013].
We adopt MT features, learning different translation models for different linguistic
representations.

The study dealing with the largest-scale dataset has been done by Suredeanu
et al. [2011]. They combined a large amount of features, bringing together linguistic
features—those based on translation and classical frequency and density ones. They
tested their ranking model on a subset of Yahoo Answers showing the effectiveness of
each feature subset. As illustrated in Section 4.2, we compare our method to theirs on
the same dataset (Yahoo Answers Manner Questions), adding distributional seman-
tics, text quality, expertise network, and user-based features that were not previously
considered.

In more recent years, new approaches based on lexical semantics emerged. Solutions
leveraging Wikipedia entities [Zhou et al. 2013] have also been used, showing potential
in addressing the retrieval of synonyms and hypernyms. Recurrent neural network
language models [Yih et al. 2013] have been studied as well, confirming that lexical
semantics is suitable to tackle the problem.

2.2. Expert Finding

A consistent branch of the studies on expert finding consists of casting the problem into
an information retrieval problem, using methods to model the relevance of candidate
users to a given question or topic. In profile-based methods, candidates are described
by a textual profile and profiles ranked with respect to an expertise query [Liu et al.
2005; Craswell et al. 2001], whereas in document-based approaches, documents rel-
evant to the query are retrieved first and then candidates are ranked based on the
co-occurrence of topic and candidate mentions in the retrieved documents [Balog et al.
2006; Serdyukov and Hiemstra 2008].

Experimentation with several slight variants to such approaches has taken place over
the few past years, including topic-specific information retrieval approaches, where
users’ expertise is calculated only from the portion of their past history that is relevant
to the question [Li et al. 2011]. The use of topic modeling [Riahi et al. 2012] and
classification approaches [Zhou et al. 2012] as opposed to information retrieval have
been explored as well. Most often, these approaches rely on features of a single type or
on quite sparse sets of features of multiple types.

In some cases, the task of expert finding has been addressed from a slightly different
perspective that goes under the label of “question recommendation,” which aims to
recommend interesting questions for a contributor who is willing to provide answers.
Such approaches tend to privilege the perspective of the answerer, such as trying to
assign questions to people who have never answered, to guarantee higher fairness of
the system [Kabutoya et al. 2010]. One of the most complete pieces of work in this
direction uses a combination of collaborative filtering and content-based approaches,
showing that the content signal is the most powerful to predict good user-question
associations [Dror et al. 2011].

As an alternative to text-based methods that rely on probabilistic frameworks or topic
models [Liu et al. 2010], network-based approaches can be leveraged to spot the users
who are the most “expert” with respect to a specific question. Graph-based models are
particularly suited to capture the expertise of individual contributors as they interact
with their peers, not only limited to CQA portals.
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In any social domain, the expertise may emerge from the complex interactions of
users and can be modeled with the so-called expertise networks [Zhang et al. 2007a;
Zhang et al. 2007b], whose construction and structure is domain dependent and can
potentially mix heterogeneous graphs [Smirnova and Balog 2011; Bozzon et al. 2013].
Examples of expertise networks include scientific collaboration networks [Lappas et al.
2009], social networks [Zhang et al. 2007a; Zhang et al. 2007b; Bozzon et al. 2013],
communication networks [Dom et al. 2003; Fu et al. 2007], folksonomies [Noll et al.
2009], and so on. Specifically, in CQA, as we will detail in Section 3.5, the expertise
networks have been modeled based on the asker-replier information [Jurczyk and
Agichtein 2007], the assignment of the best answer [Bouguessa et al. 2008; Gyongyi
et al. 2007], and the competition between answerers [Liu et al. 2011; Aslay et al. 2013].
In CQA, once the experts in specific domains are identified, algorithms of question
routing can be used to deliver relevant questions to them, also taking into account
their availability [Li and King 2010; Horowitz and Kamvar 2010] and workload balance
among the group of experts [Chang and Pal 2013].

Properties of expertise networks such as their shape, connectivity, and associativity
patterns have been investigated in depth in previous work [Chen et al. 2006; Zhang
et al. 2007a; Jurczyk and Agichtein 2007; Smirnova and Balog 2011]. In CQA specifi-
cally, studies on expertise networks include the analysis of user behavior in terms of
topical focus and discussion triggering [Gyongyi et al. 2007], the characterization of
the type of topics discussed [Adamic et al. 2008], and the relation of tie strength with
the effectiveness of the given answers [Panovich et al. 2012].

However, previous literature in CQA has focused mostly on how networks of expertise
could be leveraged to find the most expert users, as experts can likely provide high-
quality answers. The common assumption is that graph centrality on expertise network
is correlated with expertise, and this has indeed been shown extensively in the context
of CQA [Jurczyk and Agichtein 2007; Aslay et al. 2013]. Standard centrality metrics,
such as PageRank and HITS, as well as custom scores like ExpertiseRank [Zhang et al.
2007b], are commonly used for this purpose. Although in the past centrality metrics in
CQA expertise networks have been found to be less effective in the task of best answer
prediction compared to simple baselines such as the personal best answer count or ratio
or best answer ratio [Chen and Nayak 2008; Bouguessa et al. 2008], recent work has
shown that some combinations of expertise network and centrality metrics can indeed
also beat the best answer ratio, especially for some categories of questions [Aslay et al.
2013].

In network-based frameworks, expertise can be interpreted as topic independent,
similarly to the notion of authority on a graph, but expertise in CQA is more often
topic dependent. To address that, a possible solution is to narrow down the focus on
topic-induced subgraphs of the whole expertise network, assuming that all users who
participate in it are relevant to the topic [Campbell et al. 2003; Aslay et al. 2013].
Alternatively, hybrid text network approaches can be used, either with linear com-
binations of scores modeling subject relevance and user expertise [Kao et al. 2010]
or by adopting topic modeling to measure the relevance of the past users’ reply his-
tory to a specific topic and link analysis to estimate their authority within that topic
[Zhu et al. 2011]. We tackle this problem by accounting topic relevance with textual
features and expertise with network features, combining them in a learning to rank
fashion.

Last, we point out that although we focus on centrality-based expert finding, alterna-
tive network-oriented approaches have also been explored, such as label propagation
or random walk algorithms [Fu et al. 2007; Serdyukov et al. 2008] or supervised ap-
proaches [Bian et al. 2009; Chen et al. 2012].
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2.3. Comprehensive Approaches

Very few studies considered combinations of different types of features. The idea of
using user interactions, network-based features, and quality estimators together for
ranking the answers was introduced by Bian et al. [2008]. More recently, the same
approach was reproposed, with more features and a more robust learning to rank
algorithm over Stack Overflow data [Dalip et al. 2013], focusing on features specifically
designed for that dataset, such as code blocks analysis. Our approach follows the path
of mixing features coming from different fields and adopts the same learning to rank
algorithm, but at the same time we introduce several new features, including deeper
linguistic ones and those that are expertise based, dropping the ones that are too
dataset specific to preserve generality, and we evaluate our approach on a larger-scale
dataset.

3. FEATURES FROM CQA SITES

In this section, we describe the five main families of features that can be extracted
from most of CQA sites. We will use them to train a learning to rank model aimed at
the prediction of the best answer to a question. The first three families (text quality,
linguistic similarity, and distributional semantics) belong to the macrogroup of tex-
tual features. Those features rely on the assumption that the similarity between the
question and the answer and the intrinsic quality of the answer’s text are good proxies
for the quality of the answer itself. The last two, user and expertise network features,
reflect the intrinsic quality of users in answering a question by capturing either their
historical information or their interactions with other members of the community. Next
we give an overview of each family; the full list of features for each group is reported
in the Appendix.

3.1. Text Quality (tq)

Text quality features aim to estimate the intrinsic quality of an answer by capturing
objective properties of the text composition. A summary follows.

Visual properties. This group of features quantitatively measures some properties
of the text. The features belonging to this group count the number of whitespace
violations (presence of multiple contiguous whitespaces or missing spaces after a punc-
tuation mark) and the whitespace density in the text of the answer. The same counts
are produced for capital letters and capitalization violations, punctuation density and
violations, the URLs in the text, the parts of the answer enclosed between quotation
marks, and so on. The number of capitalized words and the total count of punctua-
tion marks are also counted, for a total of 23 features that are widely adopted in the
literature [Agichtein et al. 2008; Dalip et al. 2013]. (A full feature list is provided in
Table VIII).

Readability. These features evaluate how easy is to read an answer. They consider
the average word length in terms of number of characters and syllables and the ratio of
complex words in the answer. They also include commonly used readability indices such
as Kincaid, Ari, Coleman-Liau, Flesch, Fog, Lix, and Smog, for a total of 16 features
that have been already tested in previous work on CQA [Agichtein et al. 2008; Dalip
et al. 2013]. The readability indices are modeled to capture the education degree or
the number of years of study necessary to understand a text. In practice, they all
combine heuristically quantitative metrics, such as the average length of the sentences
and average length of the words, the number of characters and syllables, count of
multisyllable words, and the presence of the words in whitelists. (A full feature list is
provided in Table IX.)
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Informativeness. This group of features was considered because a reasonable answer
must contain some information that is not in the question, so we adopt three simple
features that count the amount of nouns, verbs, and adjectives occurring in the answer
but not in the question. (A full feature list is provided in Table X.)

3.2. Linguistic Similarity (ls)

To the best of our knowledge, the most complete approach for generation of linguistic
similarity features has been considered by Surdeanu et al. [2011]. They adopt different
levels of linguistic representation of a text that can be obtained using NLP algorithms
to construct tokens that are then given in input to different similarity and overlap
measures. This part of our work follows their approach.

The analysis of both questions and candidate answers with an NLP pipeline allows
us to build representations of the text using different lexicalization levels: words,
stems, lemmas, lemma and PoS tag concatenations, named entities, and super-senses
as tokens. Specifically, we used the implementation offered by ClearNLP1 v.3.2. The
representations are lists of token n-grams. As an example, the sentence “The man plays
the piano,” after stopword removal, can be represented as word unigrams (man, plays,
piano) or as lemma+pos unigrams (man:NN, play:VBZ, piano:NN) or as super-sense
bigrams (noun.person-verb.competition, verb.competition-noun.artifact).

We also tag the text with dependency parsing and semantic role labeling [Gildea and
Jurafsky 2002], so we can extract chains from them in the same way that we extract
the n-grams. For the dependency parsing, the chains are constructed in the form of
dependent-relationType-head, but we can also extract more general chains that do not
contain the relationType. For the semantic role labeling, the chain has the form of
predicate-argumentType-argument. Additionally in this case, the argument type can be
omitted. The length of the chain can be increased, concatenating the chains of length
one that share intermediate elements. For example, by concatenating unlabeled depen-
dencies from the previous example, we obtain the chains man-plays and piano-plays.

Because longer chains do not usually add valuable information because of their spar-
sity [Surdeanu et al. 2011], we decided to not adopt them. The tokens that compose
the chain can also be at different lexicalization degrees, but to minimize the sparsity
we adopted only lemmas and super-senses. As for our example, from the sentence
“The man plays the piano,” we extract labeled dependencies lexicalized with lemmas
(piano-dobj-play, man-nsubj-play), their unlabeled versions (piano-play, man-play),
and the versions with super-sense lexicalization (noun.artifact-dobj-verb.competition,
noun.person-nsubj-verb.competition) and (noun.artifact-verb.competition, noun.person-
verb.competition). The same is done with the semantic role labeling annotations: the
possible chains are with argument labels with lemma lexicalization (play-A0-man, play-
A1-piano), without argument labels with lemma lexicalization (play-man, play-piano),
with argument labels and super-sense lexicalization (verb.competition-A0-noun.person,
verb.competition-A1-noun.artifact), and without argument labels with super-sense lex-
icalization (verb.competition-noun.person, verb.competition-noun.artifact).

To compare and assess how linguistically similar a question is to the candidate
answer, we obtain the chains at different lexicalization levels for both them and then
apply a similarity metric to the obtained chains.

For example, we want to compare the question “Is Guinness a kind of beer?” with the
passage “Guinness produces different kinds of beers.” We extract the chains of lemma
bigrams (excluding stopwords) for the question and obtain [be_guinness, guinness_
kind, kind_beer]. We do the same for the passage and obtain [guinness_produce,

1https://github.com/clir/clearnlp.
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produce_different, different_kind, kind_beer]. A simple similarity metric could be the
number of common tokens; in this case, we have one common tokens kind_beer.

Next, we list all of the similarity metrics that we apply to the chains.

Overlap. The overlap features count the ratio of tokens in common between the
question and the answer as |tq∩ta|

|tq| , where tq is the set of tokens belonging to the question
and ta is the set of tokens belonging to the answer. With this simple overlap formula,
we calculate the overlap of unigrams with all of the different lexical levels, resulting
in 6 features. The other 15 features are obtained calculating the overlap of 2-grams,
3-grams, and 4-grams of all lexicalizations. We consider named entities already as
n-grams and do not split them further, as any subset of tokens would disrupt the
meaningful association of words of that entity.

We also calculate the overlap of the dependency chains and semantic role labeling
chains, both labeled and unlabeled and both with lemma and super-sense lexicaliza-
tions, resulting in eight features. For the different lexicalizations of the unigrams, we
also calculate the Jaccard index as |tq∩ta|

|tq∪ta| , resulting in additional six features. We do not
calculate the Jaccard index for the n-grams and for the dependency and semantic role
labeling chains because of their sparsity. (A full feature list is provided in Table XI.)

Frequency. We use standard information retrieval techniques to obtain a measure
of similarity between question and answer that takes into account the frequency of
the tokens in the texts and in the whole corpus. We assign scores to the question-
answer pairs according to the Tf-Idf weighting scheme, the BM25 weighting scheme,
and the language modeling (with Dirichlet priors [Zhai and Lafferty 2001]) for all of the
different lexicalization levels except for the named entities, for a total of 15 features.
(A full feature list is provided in Table XII.)

Density. We adopt a slight modification of minimal span weighting (MSW) proposed
by Monz [2004]. MSW is a proximity-based metric for document retrieval, based on
a linear combination of (i) the minimal size (or span) of a text excerpt that covers all
terms in common between the query and the document, (ii) the ratio of query terms
that match the document, and (iii) the global text similarity between the query and the
document, computed with the Lnu.ltc weighting scheme [Buckley et al. 1995].

The text similarity intercepts global similarity, the span intercepts local similarity,
and the matching term ratio counterbalances the local similarity. For example, in the
case in which only one query term of five matches the document, the span component
would return a value of 1, whereas the matching term would be 1

5 . To obtain a high
local similarity, the highest number of terms from the question should be present in
the smallest span of terms in the answer.

As we capture the concept of global similarity with a whole set of other features (e.g.,
frequency based), we retain only the local similarity part, resulting in the following
formula: ( | tq ∩ ta |

1 + max(mms) − min(mms)

) ( | tq ∩ ta |
| tq |

)
, (1)

where tq and ta are the sets of tokens of the question and the answer, respectively, and
max(mms) and min(mms) are the initial and final location of the shortest sequence of
answer tokens containing all question tokens. We calculate it for all of the different
lexicalization levels, thus obtaining six features. (A full feature list is provided in
Table XIII.)

Machine translation. Research in MT, a subfield of computational linguistics, investi-
gates the use of computational methods to translate text from one language to another.
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Due to the availability of aligned corpora, statistical approaches to MT have rapidly
grown in the past decade, leading to better phrase-based translations. The objective of
MT in CQA is to “bridge the lexical chasm” between the question and the answer. We
calculate the probability of the question being a translation of the answer P(Q | A) and
use it as a feature:

P(Q | A) =
∏
q∈Q

P(q | A)

P(q | A) = (1 − λ)Pml(q | A) + λPml(q | C)

Pml(q | A) =
∑
a∈A

(T (q | a)Pml(q | A)),

(2)

where the probability that the question term q is generated from answer A, P(q | A),
is smoothed using the prior probability that the term q is generated from the entire
collection of answers C, Pml(q | C), and λ is the smoothing parameter. Pml(q | C) is
computed using the maximum likelihood estimator.

As the translation of a word to itself P(w | w) is not guaranteed to be high, we set
P(w | w) = 0.5 and rescale P(w′ | w) for all other w′ terms in the vocabulary to sum
up to 0.5 so that

∑
w′∈W (w′ | w) = 1. This is needed for the adoption of translation

models for retrieval tasks, as the exact world overlap of question and answer is a good
predictor [Surdeanu et al. 2011].

Calculating the translation models for all lexicalization degrees and for all combina-
tions of dependencies and semantic role labeling chains, we obtain 14 features. (A full
feature list is provided in Table XIV.)

Others. We consider four additional miscellaneous features: the length of the exact
overlap of the sequences of words in the question and the answer normalized by the
length of the question, the length ratio of the question and the answer, the inverse of
the length of the answer, and the inverse of the length of the question. (A full feature
list is provided in Table XV.)

3.3. Distributional Semantics (ds)

In addition to features that have been used in previous work, we propose to use distri-
butional semantics features for the first time in the context of best answer prediction.

Distributional semantics models (DSMs) have been increasingly used in computa-
tional linguistics and cognitive science. These models represent word meanings through
contexts: different meanings of a word can be accounted for by looking at the differ-
ent contexts in which the word occurs. Philosophical insight of distributional models
can be ascribed to Wittgenstein’s quote “the meaning of a word is its use in the lan-
guage” [Wittgenstein 1953]. The idea behind DSMs can be summarized as follows: if
two words share the same linguistic contexts, they are somehow similar in their mean-
ing. For example, analyzing the sentences “drink a glass of wine” and “drink a glass of
beer,” we can assume that the words wine and beer have similar meaning because they
appear in proximity to the same set of tokens (drink, a, glass, of).

This insight can be implemented with a geometrical representation of words as
vectors in a semantic space. Each term is represented as a vector whose components
are the words occurring in the contexts in which that term appears; the words in the
vector are weighted by the number of contexts in which they occur. The granularity of
the context can vary from an arbitrarily small window of neighboring terms up to the
whole set of terms in the document.

For a detailed analysis of the motivations, philosophical background, and practical
use of DSMs, please refer to Karlgren and Sahlgren [2001].
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Fig. 1. Example of vector representation of words in a DSM.

As an example, given the sentences “drink a glass of wine,” “wine is made of grapes,”
“drink a glass of beer,” and “beer is made of hops,” and considering words occurring
in the same sentence as context, we can represent the words wine and beer with the
vectors shown in Figure 1, simply counting the number of occurrences.

Semantic spaces have important advantages over other textual features. They do not
require specific text operations—only tokenization is always needed. They are also lan-
guage agnostic and independent of the specific corpus. This implies low computational
cost and independence from any external source.

The earliest and simplest formulation of such a space has a root in the vector space
model [Salton et al. 1975], which is one of the earliest models in information retrieval.
Since then, they have been used in several NLP tasks [Basile 2011; Collobert et al.
2011; Turian et al. 2010], including synonym choice [Landauer and Dumais 1997], se-
mantic priming [Landauer and Dumais 1997; Burgess et al. 1998; Jones and Mewhort
2007], finding similarity of semantic relations [Turney 2006; Turney and Littman
2005], essay grading [Wolfe et al. 1998; Foltz et al. 1999], automatic construction of
thesauri [Schütze and Pedersen 1995], and word sense induction [Schütze 1998]. A
useful survey of the use of vector space models for semantic processing of text has
been done by [Turney and Pantel 2010]; an analysis of some compositional operators
is described in the work by Mitchell and Lapata [2010]. Naturally, also several
applications to information retrieval exist [Widdows and Ferraro 2008], including
term-doc matrix reduction [Deerwester et al. 1990] and ambiguity resolution [Schütze
and Pedersen 1995; Basile et al. 2011].

So far, DSMs have not been used in any task directly related to CQAs. Nevertheless,
the ability of these models to capture paradigmatic relations between words is partic-
ularly convenient to match answers to questions, when the pure syntactic similarity
could not always capture the relatedness of concepts. Next, we first describe how we
build the semantic space, then we describe the DSM that we adopt, and finally we
describe our strategy to integrate it inside our best answer predictor.

Co-Occurrence matrix construction. Our semantic spaces are modeled by a co-
occurrence matrix. The linguistic context taken into account is a window w of co-
occurring terms. In our experiments, we adopt a window of size 5 centered on the
current term. Given a reference corpus2 and its vocabulary V , an n × n co-occurrence
matrix is defined as the matrix M = (mij) whose coefficients mij ∈ R are the number of
co-occurrences of the words ti and tj within a predetermined distance w.

The term × term matrix M, based on simple word co-occurrences, represents the
simplest semantic space, called the term-term co-occurrence matrix (TTM).

An example term× term matrix M is shown in Figure 2. The corpus from which it
is obtained are the same four sentences of Figure 1: “drink a glass of wine,” “wine is
made of grapes,” “drink a glass of beer,” and “beer is made of hops.”

In the literature, several methods to approximate the original matrix by rank re-
duction have been proposed. Dimensionality reduction allows for the discovery of

2The corpus could be the collection of documents indexed by the QA system but also some external text
collection.
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Fig. 2. Example of term× term matrix M.

high-order relations between entries and cancels noisy co-occurrences. We exploit four
methods for building our reduced semantic spaces: latent semantic analysis (LSA), ran-
dom indexing (RI), LSA over RI, and continuous skip-gram models. All of these methods
produce a new matrix M̂, which is a n × k approximation of the co-occurrence matrix
M with n row vectors corresponding to vocabulary terms, whereas k is the number of
reduced dimensions.

Latent semantic analysis. LSA [Deerwester et al. 1990] is based on the singular value
decomposition (SVD) of the original matrix M. M is decomposed in the product of three
matrices U�V�, where U and V are orthonormal matrices whose columns are the right
and left eigenvectors of the matrices M�M and MM�, respectively, whereas � is the
diagonal matrix of the singular values of M placed in decreasing order.

SVD can be applied to any rectangular matrix, and if r is the rank of M, then the
matrix M̃ = Uk�kV�

k of rank k � r, built choosing the top k singular values, is the best
rank k approximation of M. The approximated M̃ is shown in Figure 3.

Since the matrix MM� corresponds to all possible combinations of any two terms, it
is possible to compute the similarity between two terms by exploiting the relation

MM� = U�V�V��U� = U���U� = (U�)(U�)�.

In the case of the k-approximation of M, the complexity of the computation of the
similarity between any two terms is reduced.

Random indexing. We exploit RI, introduced by Kanerva et al. [1988], for creating
the DSM based on RI. This technique allows us to build a semantic space with no need
for matrix factorization, because vectors are inferred using an incremental strategy.
Moreover, it allows one to efficiently solve the problem of reducing dimensions, which
is one of the key features used to uncover the latent semantic dimensions of a word
distribution.

RI is based on the concept of random projection according to which randomly chosen
high dimensional vectors are “nearly orthogonal.” This yields a result that is compa-
rable to orthogonalization methods, such as SVD [Landauer and Dumais 1997], but
saving computational resources.
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Fig. 3. Depiction of SVD matrices.

Sahlgren [2005] provide a clear and motivated introduction to RI, whereas a more
detailed dissertation about RI, its construction, and the syntagmatic and paradigmatic
use of context can be found in the work of Sahlgren [2006]. In the work of Cohen
et al. [2010], scalability issues are discussed in detail, along with the suggestion of the
capability of RI to find implicit relations among words.

Formally, given an n×mmatrix M and an m×k matrix R made up of mk-dimensional
random vectors, we define a new n × k matrix M′ as follows:

M′
n,k = Mn,mRm,k k � m. (3)

The new matrix M′ has the property to preserve the distance between points. This
property is known as the Johnson-Lindenstrauss lemma [Johnson and Lindenstrauss
1984]: if the distance between any two points of M is d, then the distance dr between
the corresponding points in M′ will satisfy the property that dr = c · d (where c is a
constant). A proof of that property has been done by Dasgupta and Gupta [1999].

The product between M and R is not actually computed, but it corresponds to building
M′ incrementally as follows:

(1) Given a corpus, a random vector is assigned to each term. The random vector is
high dimensional, sparse, and with very few elements with nonzero values {−1, 1},
which ensures that the resulting vectors are nearly orthogonal, and the structure
of this vector follows the hypothesis behind the concept of random projection.

(2) The semantic vector of a term is given by summing the random vectors of
terms co-occurring with the target term in a predetermined context (document/
sentence/window).

An example of the construction of the term vectors is shown in Figure 4.

LSA over RI. Computing LSA on the co-occurrence matrix M can be a computationally
expensive task, as the vocabulary V can reach thousands of terms. Here we propose
a simpler computation based on the application of the SVD factorization to M′, the
reduced approximation of M produced by RI. Sellberg and Jonsson [2008] followed a
similar approach for the retrieval of similar FAQs in a QA system. Their experiments
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Fig. 4. Term vector construction in RI. Context vectors are random vectors.

showed that reducing the original matrix by RI resulted in a drastic reduction of LSA
computation time, at the cost of a very slight decrease of performance.

Continuous skip-gram model. A quite different DSM aims at learning distributed
representations of words with neural networks, because they have better performances
than LSA in preserving linear regularities among words [Mikolov et al. 2013b] and the
latest models are computationally less expensive, so they scale better on large datasets.

Mikolov et al. [2013a] construct a really scalable log-linear classification network,
using a simpler architecture than previous work, where neural networks are usually
constructed with several nonlinear hidden layers [Bengio et al. 2003]. Two such simpler
networks are proposed in that work: the continuous bag-of-words model and the contin-
uous skip-gram model. Although both are shown to be effective in semantic-syntactic
word relationship learning and sentence completion tasks, the former is faster to train,
whereas the latter has better performance at the cost of slightly longer training time.
Even though both are really scalable, for our experiments we decided to adopt the latter
one for its accuracy.

The continuous skip-gram model builds on feedforward neural networks [Bengio
et al. 2003], but it consists only of input, projection, and output layers, so removing the
hidden layer. As most of the complexity is caused by the nonlinear hidden layer, this
improves the learning efficiency at the expenses of a representation that might be less
precise but enables the learning of models with bigger amounts of data. The model,
shown in Figure 5, iterates over the words in the dataset and uses each word wt as an
input to a log-linear classifier with a continuous projection layer. What it outputs is a
prediction of the words within a certain range before and after the input word.
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Fig. 5. Architecture of the continuous skip-gram model.

As the words that are more distant from the input word are less related to it, the
model adopts a randomization policy: if c is the fixed range before and after a word, a
value r is obtained picking randomly a value between [1, c]. Then r words before the
current and r words after the current are used as correct labels, from wt−r to wt−1 and
from wt+1 to wt+r. Randomizing the window size with a random value between 1 and
c is a way to avoid overfitting: setting a fixed parameter c might indeed bias the final
result, whereas having different models with a random r in [1, c] smooths that risk.

At the end of the training phase, the weights associated with the projection layer are
used as vector representations for each word. The resulting encoding captures meaning-
ful word representations, where words of similar meaning have nearby representations.

DSM integration in QA. We now discuss how to leverage the word vector represen-
tations to match questions to the best answers. We use word vector representations
for building the sentence-level vector representation by summing the vectors of the
words that appear in the sentence. This way, we obtain vector representations for
questions and answers and can compute their cosine similarity to obtain a semantic
similarity measure. This measure becomes one feature used in the ranking of the
answers. Questions and answers are usually short pieces of text, and this makes this
strategy more suitable.

In DSMs, given the vector representation of two words u = (u1, . . . , un)� and v =
(v1, . . . , vn)�, it is always possible to compute their similarity as the cosine of the angle
between them:

cos(u, v) =
∑n

i=1 uivi√∑n
i=1 u2

i
∑n

i=1 v2
i

. (4)

However, the user’s question and the candidate answer are sentences composed by
several terms. To compute the similarity between them, we need a method to compose
the words occurring in these sentences. It is possible to combine words through vector
addition (+). This operator is similar to the superposition defined in connectionist
systems [Smolensky 1990] and corresponds to the pointwise sum of components:

s = u + v, (5)

where si = ui + vi.
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Addition is a commutative operator, which means that it does not take into account
any order or underlying structures existing between words in both questions and an-
swers. We do not exploit more complex methods to combine word vectors, as they do
not clearly outperform the simple vector addition [Mitchell and Lapata 2010]. For a
deeper analysis of compositionality in distributional semnatics and its connection with
syntax and formal semantics, refer to Baroni et al. [2014].

Given a phrase or sentence s, we denote with s its vector representation ob-
tained applying addition operator (+) to the vector representation of terms of which
it is composed. Furthermore, it is possible to compute the similarity between two
phrases/sentences exploiting the cosine similarity between vectors (Equation (4)).

Formally, if q = q1, q2, . . . , qn and a = a1, a2, . . . , am are the question and the candidate
answer, respectively, and each qi and ai is a term present in them, we build two vectors,
q and a, which respectively represent the question and the candidate answer in a
semantic space. Vector representations for the question and answer are built applying
the addition operator to the vector representation of words belonging to them:

q = q1 + q2 + · · · + qn,

a = a1 + a2 + · · · + am.
(6)

The similarity between q and a is computed as the cosine similarity between them.
For example, we want to compare the question q “Is Guinness a kind of beer?” with

the passage a1 “Guinness produces different kinds of stouts” and the passage a2 “Apple
produces different kinds of computers.” The vector representations of the (nonstopword)
words are as follows:

vis = [0.1, 0.2, 0.3, 0.25]
vguinness = [0.7, 0.1, 0.12, 0.09]
vkind = [0.2, 0.1, 0.65, 0.5]
vbeer = [0.8, 0.05, 0.1, 0.12]
vproduces = [0.3, 0.4, 0.1, 0.04]
vdifferent = [0.1, 0.21, 0.1, 0.12]
vkinds = [0.22, 0.08, 0.67, 0.48]
vstouts = [0.82, 0.04, 0.11, 0.11]
vapple = [0.44, 0.71, 0.24, 0.14]
vcomputers = [0.05, 0.84, 0.2, 0.6].

It is easy to see how the vectors for beer and stout and the vectors for kind and kinds
are quite similar to each other (i.e., close in the semantic space).

The representation for q, a1, and a2 are the following:

q = vis + vguinness + vkind + vbeer = [1.8, 0.45, 1.17, 0.96]
a1 = vguinness + vproduces + vdifferent + vkinds + vstouts

= [2.14, 0.83, 1.1, 0.84]
a2 = vapple + vproduces + vdifferent + vkinds + vcomputers

= [1.11, 2.24, 1.31, 1.38].

The cosine similarity among the q and the two passages a1 and a2 is as follows:

cos(q, a1) = 0.9846
cos(q, a2) = 0.7794.

Thus, a1 would be ranked higher than a2 in a rank list.
For computing the distributional semantics features for this set of experiments, we

construct the M matrix using Wikipedia as a corpus and using the set of all answers

ACM Transactions on Information Systems, Vol. 35, No. 1, Article 4, Publication date: September 2016.



Social Question Answering: Textual, User, and Network Features for Best Answer Prediction 4:17

in the training set obtained from the Yahoo Answers 2011 dataset that we use for
the evaluation (see Sections 4.2 and 4.4). We do so to use both general-purpose texts
incorporating commonsense knowledge and knowledge that is specific to the dataset
that we want to actually use. The number of dimensions of the vector representations
for all methods is 400, stopwords are removed, and only unigrams are considered. We
calculate the cosine similarity scores using vectors from the three types of semantic
spaces constructed on both corpora, resulting in eight features. (A full set of features
is provided in Table XVI.)

3.4. User Features (u)

A considerable part of the features are related to the user-centric activity to capture
their behavior and history. The question and answer history and some standard fields
from the public profile description are usually available in all major CQA platforms.
We also assume that questions are tagged with a category, which is the case for most
of the communities that enforce a strict category of systems or allow the possibility of
collaborative tagging. If a categorization is not available, topic models could be used
to extract it. Although most of the features that we present here have been used in
prior literature of best answer selection [Agichtein et al. 2008], the decomposition of
the same features across different question categories has never been explored in this
context. The subgroups of user features are summarized next.

User profile. The user profile contains information that might be a good proxy for the
level of user involvement in the community. These include the presence of a resume, a
textual self-description of the user, a title and profile picture (surprisingly, a remarkably
good estimator of expertise [Gı̂nsca and Popescu 2013]), and the amount of time the
user has been registered on the platform at the time the question was asked (we refer
to it as age for simplicity), for a total of five features. (A full set of features is provided
in Table XVII.)

Questions and answers. The number of questions the user asked, deleted, answered,
flagged, and starred, and their normalized versions by user age, are the basic indicators
for user activity. In addition to that, we also compute the ratio of those values divided by
all questions asked. We replicate the same features that we calculated on the questions
asked by the user on the answers given by the user as well, adding features about the
thumbs up and down received by the answers and their ratio and delta. Overall, we
define 19 features for the questions and 19 for the answers. (A full set of features is
provided in Table XVIII.)

Question categories. We replicate the same features defined for the question and
answer history of the user but only consider the category of the question actually asked.
For example, if the question belongs to the category “sports,” we count the questions
asked and the answers given by the users in that category. This will help us estimate
the user expertise and how much the user is engaged in the specific topic rather than
his generic expertise or interest in different topics than the one in which the asker is
interested. Thus, we add an additional 19 features for questions in the category and
another 19 for the answers in the category. We also add 3 additional features that
consider the entropy H of discrete probability distribution p obtained by counting the
number of questions, the number of answers, and the combined number of question
and answers in all of the different categories (‖p‖ is the number of categories).

H(p) = −
‖p‖∑
i=0

pi log2 pi (7)

ACM Transactions on Information Systems, Vol. 35, No. 1, Article 4, Publication date: September 2016.



4:18 P. Molino et al.

This allows us to evaluate how specific (high entropy) or spread out (low entropy) the
user knowledge (or interest) is. (A full set of features is provided in Table XIX.)

Behavioral. Other features are related to the user behavior on the system. We count
how many positive and negative votes are provided, plus their deltas and ratios, and
we measure the answering speed as the temporal gap between the time of the question
and answer publications, and so on, for a total of eight features. (A full set of features
is provided in Table XX.)

3.5. Expertise Network Features (n)

The network features that we propose arise from expert finding literature, where a
content-agnostic analysis of the interactions between participants in CQA is shown to
help rank people by their general expertise in answering questions. For instance, users
who provided high-quality answers (i.e., marked as best answers) to many questions
will likely provide good answers in future interactions as well. Additionally, the es-
timation of the users’ expertise may not only depend on their direct interactions but
also from the interactions of other users in a recursive fashion. For example, one might
imagine that, given a specific domain of knowledge, correct answering of a question
made by an expert is a better indication of expertise than answering a question made
by a newbie.

These considerations have motivated past research in the study of expertise networks
[Zhang et al. 2007a], especially for CQA. Expertise networks are weighted graphs
where nodes are users and weighted edges model interactions that account for the
flow of activity, knowledge, or status differences among peers. In the past, three main
expertise networks were defined and studied for CQA. We provide visual examples for
each in Figure 6.

The first is the asker-replier network [Jurczyk and Agichtein 2007], where directed
edges flow from askers to answerers and are weighted by the number of replies. The
second is the asker–best answerer network (ABAN) [Bouguessa et al. 2008; Gyongyi
et al. 2007], where directed edges flow from askers to the best answerers and are
weighted by the number of best answers given. The last is the competition-based
expertise network (CBEN) [Aslay et al. 2013], where edges flow between all users
who answered the same question toward the user who gave the best answer to that
question; the possibility of building such a network is conditioned by the possibility
for the users to explicitly mark the best answer, which is most often true in large-
scale CQAs. The advantage of ARN is that it needs less information to be built, but
ignoring the signal coming from the best answer, it considers all answers to have equal
value. ABAN addresses this problem; however, on the other hand, it disregards the
information of people who answered and whose answer was not selected as the best.
CBEN was proposed to take into account both aspects and to capture at the same time
the inherent competition that exists between answerers to get awarded with the best
answer. In addition, no relation between asker and answerer is represented in CBEN
under the assumption that asking a question is not necessarily related to a lack of
expertise [Zhang et al. 2007a; Zhang et al. 2007b], especially in broad general-purpose
QA communities.

The application of graph centrality metrics to the expertise networks mentioned ear-
lier produces a ranking of the users based on their expertise. Depending on the specific
combination of network and centrality, the ranking might convey different meanings;
however, in all cases, users with higher scores are supposed to have higher expertise
compared to their peers with lower scores. In previous work, this assumption was
validated by multiple experiments and some specific network-centrality combinations
(PageRank on ARN, indegree on ABAN, HITS on CBEN) have proved to work best in
the task of best answer prediction [Aslay et al. 2013]. In this work, in a learning to rank
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Fig. 6. Graph of relations between askers, questions, and answerers (left) and the three types of expertise
networks derived by it (right).

framework, we aim to include a wide set of features, and therefore we do not restrict
ourselves to specific pairs but consider instead all combinations of expertise networks
(ARN, ABAN, CBEN) with the centrality metrics that have been applied to them in
past work (PageRank [Page et al. 1999], HITS [Kleinberg 1999], indegree) for a total
of nine features. We consider networks built on the full question-answer dataset with
no distinction of topic, as we want to measure general expertise with network features
and account for relevance with the textual features. (A full set of features is provided
in Table XXI.)

4. EXPERIMENTAL EVALUATION

Next we describe the problem under study and the framework we use to address it,
along with four baselines against which we compare our method.

Problem statement. Given in input a question q and the set of its answers A(q), among
which exactly one answer a∗ ∈ A(q) has been selected as the best answer, output a rank
of the answers in the set A(q) that has a high likelihood of a∗ being placed high in the
rank. This problem is a generalization of the best answer selection and can be reduced
to it if only the first element in the ranking is considered, but it allows a more detailed
analysis of the results and a richer comparison between methods.

4.1. Learning to Rank for Best Answer Prediction

We address the problem using a learning to rank approach, where question-document
pairs (q, d) are labeled with relevance judgments that indicate the degree of relevance
of the document d with respect to query q. Each pair is represented by a set of features
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that are usually an indication of the degree of similarity between q and d, yet also
information about q and d in isolation, such as their length or the PageRank of Web
documents. Each pair is treated as a single data point, and a set of data points can be
used for training purposes to learn a function to predict the best ranking of different
documents according to a query.

Several algorithms have been proposed for this goal in the literature [Liu 2011]. We
opted for RF [Breiman 2001] because of its resilience to overfitting, a problem that
may affect our experimental setting due to the size of our dataset, and because of the
successful results in several use cases related to CQA [Dalip et al. 2013] and in other
large-scale retrieval experiments [Mohan et al. 2011].

Let xi = φ(d, q), where φ is a feature extractor and xi is an m-dimensional vector.
Let D = (x1, y1), . . . , (xn, yn) be a set of query-document pairs xi and their associated
relevance ratings yi ∈ Y . In the specific case of our question-answer dataset, the
relevance is maximum for the best answer and zero for all other answers.

The RF algorithm trains a model H such that H(xi) ≈ yi and so that the ranking of
all documents d appearing in pair with a query q according to H(xi) is similar to the
ranking according to yi. The pseudocode of the procedure is listed in Algorithm 1.

ALGORITHM 1: Random Forests
Require: D = (x1, y1), . . . , (xn, yn), r > 0

1: for i ← 1 to r do
2: Dt ← sample(D)
3: K ← roandomPick(m)
4: hi ← buildDecisionTree(Dt, K)
5: end for
6: H() ← 1

r

∑r
i=1 hi()

7: return H()

The main idea of RF is to apply a prediction tree—specifically, a regression tree in
our case—to M subsets of D and then average the results. A sample Dt is extracted with
replacement from D (step 2). A set K of features is randomly picked from the feature
set so that |K| ≤ m (step 3). A regression tree is induced from Dt using the features in
K (step 4). The whole process is repeated r times, and the outputs of all single trees
are averaged to obtain the function H (step 6). The use of different samples of the data
from the same distribution and of different sets of features for learning the individual
regression trees prevents the overfitting.

In our experiments, the queries are the questions and the documents are the candi-
date answers. In our evaluation, we use the implementation provided by the RankLib
library.3

4.2. Dataset

The instance of CQA that we consider for our experiments is Yahoo Answers because
of its popularity and richness of content. Launched in 2005, it is one of the largest
general-purpose CQA services to date, hosting questions and answers on a broad range
of topics, categorized through a predefined two-level taxonomy. There are 26 predefined
top-level categories (TLCs), such as politics, sports, or entertainment, and a growing
number of leaf-level categories (LLCs)—more than 1,300 at the time of this study—
such as makeup or personal finance. Similarly to other CQA portals, Yahoo Answers
follows a strict question-answer format, with questions submitted as short statements

3http://sourceforge.net/p/lemur/wiki/RankLib/.
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Fig. 7. Distribution of number of answers per question. Questions with fewer than four answers are not
included in the dataset.

with optional detailed description and a mandatory LLC that is assigned by the asker.
Questions have a life cycle of states that goes from open to voting and finally to resolved,
and users can actively moderate content using several feedback mechanisms, such as
by marking spam or abusive content, adding stars to interesting questions, voting
for best answers, and giving thumbs-up or thumbs-down ratings to answers. Among
all feedback signals, the most important is the selection of the best answer, which
is designated by the asker, or if the asker does not provide it after a given time, it
is selected by the community by majority vote. The process of best answer selection is
important not only to reward contributors according to the Yahoo Answers incentive
scheme4, but also for archival purposes, as the best answer will be given evidence in
the page and will serve users who might have the same question in the future.

4.2.1. Yahoo Answers 2011. We first collected a data sample from Yahoo Answers re-
lated to the period between January and December 2011, for a total of >7.2M resolved
questions with the best answer assigned by the asker, >39.5M answers, and >6.1M
unique users. As our goal is to select the best answers among the ones provided, we
need to consider only questions with a minimum number of answers for the task to be
meaningful. For this reason, all answers that we selected for the dataset have at least
4 answers. The distribution of number of answers per question is shown in Figure 7.
The dataset contains the text of the question and answers, their metadata (timestamp,
question category, number of thumbs up and down, best answer mark) and the meta-
data associated to the user involved in the process (user self-description, subscription
date, number of questions asked and answers given, number of best answers, presence
of thumbnail photo in the profile). Each question has only one answer marked as the
best one.

As Yahoo Answers is a general-purpose portal, not only does it cover different topics,
but it also hosts a broad variety of question types. In practice, every forum category
has some mix of requests for factual information, advice seeking, and social conver-
sation or discussion [Harper et al. 2009]. The most refined categorization obtained on
Yahoo Answers so far has been proposed by Aslay et al. [2013], who extended the sem-
inal work by Adamic et al. [2008] and used k-means to cluster Yahoo Answers LLCs
using features such as the average number of replies to a question and the average

4A new user is granted 100 points, and asking a question costs 5 points. Several user actions are worth new
points, among which the submission of an answer that is the most rewarding one (as it is worth 10 points).
Detailed scheme are available at http://answers.yahoo.com/info/scoring_system.
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number of characters in a reply, and some activity-based features such as the pro-
portion of questions with contradictory answer ratings (thumbs up vs. thumbs down).
The optimal R2 was obtained for k = 4, corresponding to the following main ques-
tion types: factual-information seeking (31% of the questions), subjective-information
seeking (32%), social discussion (10%), and poll-survey conducting (27%). We use this
categorization to compare the feature performance also across question types.

4.2.2. Yahoo Answers Manner Questions. To compare our results directly against some
state-of-the-art methods, we decided to replicate the experiments with a publicly avail-
able dataset5 that contains a sample of manner questions collected from the U.S. Yahoo
Answers site. Manner questions are those questions that ask how to do something. Fol-
lowing what was done in previous work [Surdeanu et al. 2011], the manner questions
are extracted following two simple heuristics that aim at preserving only high-quality
questions and answers. This is done by retaining all questions that (i) match the
regular expression, how (to | do | did | does | can | would | could | should), and
(ii) have at least four words, out of which at least one is a noun and at least one is a
verb. This process yields 142,627 questions and 771,938 answers, with an average of
5.41 answers for each question.

4.3. Baselines

We compare our approach with four different baselines:

—BM25: Standard ranking function used in information retrieval to rank matching
documents according to their relevance to a given search query. We consider the
question as query and the answers as documents. We chose this baseline over other
information retrieval baselines because it is the best-performing one in our dataset.

—Finding high-quality content in social media [Agichtein et al. 2008]: A supervised
method trained on measures of text quality, such as grammatical, syntactic, and
semantic complexity; punctuation and typo errors, and simple question-answer sim-
ilarity and user expertise estimations. Readability and informativeness are also in-
cluded. Their best performance was achieved using stochastic gradient boosted trees.
We replicated their learning approach and feature set. This baseline was selected
because it was the state of the art for best answer selection on Yahoo Answers data.

—Exploiting user feedback to learn to rank answers [Dalip et al. 2013]: The learning
to rank approach for ranking answers in Q&A fora using RF, trained on several
families of features. We train it using 142 features overall, excluding those that in
the original publication were specifically designed for the Stack Overflow use-case
and all features related to HTML formatting of the question and answer, as we do
not have text format information in our dataset.

—Learning to rank answers [Surdeanu et al. 2011]: Combines linguistic features, those
based on translation, classical frequency, density ones, and Web-correlation–based
ones with a learning to rank approach, carried out with an averaged perceptron.
It was applied on the Yahoo Answers Manner Questions dataset as a testbed. The
authors did not use any user-based feature nor expertise-based ones, as this kind
of information is missing from the dataset, but they also did not adopt text-quality
features that we adopt, and the levels of lexicalizations of their linguistic features
are only terms, lemmas, and super-senses. We chose this baseline because it was the
state of the art on the Yahoo Answers Manner Questions dataset for P@1.

—Improved answer ranking [Hieber and Riezler 2011]: Similar to the previous one, this
work relies mainly on textual features, but adopting Piggybacking features on Web
snippets. The ranking is done adopting an SVM-based ranker. Their evaluation was

5http://webscope.sandbox.yahoo.com/catalog.php?datatype=l.
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carried out on the Yahoo Answers Manner Questions dataset as well. We chose this
baseline because it was the state of the art on the Yahoo Answers Manner Questions
dataset for mean reciprocal rank (MRR).

4.4. Performance Analysis

We evaluate our learning to rank framework by performing a 10-fold cross validation.
Questions in each dataset are split into a training set Tr, a test set Ts, and a valida-
tion set Vs. Applying 10-fold cross validation means that the dataset is divided into
10 disjoint partitions. The experiment was performed in 10 steps, and at each step,
eight partitions were used as training set, one partition was used as test set, and the
last partition was used as validation set, which is adopted for tuning the RF hyper-
parameters (e.g., number of bags, number of trees, number of leaves). The steps were
repeated until each of the 10 disjoint partitions was used as the Ts, and results were
averaged over 10 runs. It is worthnoting that the validation set is used to optimize the
parameters of the learning to rank algorithms, including the baseline in Dalip et al.
[2013].

For each question, all of its answers are ranked by the learning to rank method.
To allow a direct comparison of the quality of the ranking with results in previous
work, we use three standard information retrieval metrics that have been commonly
used to evaluate this task, namely mean reciprocal rank (MRR), P@1, and discounted
cumulative gain (DCG). When considering the answers to a single question, these are
formally defined as follows:

RR = 1
rank(BA)

DCGk =
k∑

i=1

2reli − 1
log2(i + 1)

P@1 = rel1,

where A is the set of answers, rank(BA) is the rank of the best answer for that question,
and reli is an indicator function of relevance that returns 1 if the answer in the ith po-
sition in the ranking is the best answer. All scores are then averaged over all questions
( 1
|Q|

∑
q∈Q score(q)). In case the best answer is ranked first, MRR = DCG = P@1 = 1.

As each question has only one answer marked as correct (the best answer), the
DCG = nDCG, because the ideal DCG is equal to 1. Given the large size of our ex-
perimental dataset, all differences that we obtain are statistically significant under
the nonparametric randomization test [Smucker et al. 2007], with p < .01.

4.4.1. Performance on Yahoo Answers 2011. To gain insights about the predictive power
of different feature families, we train the model on several subsets of features, with
a greedy selection procedure. We first separately test each family and pick the best-
performing one; at the next step, we keep that family and combine it with all others
to select the best combination. The process is repeated until all feature families are
included. The greedy strategy allows us to find a locally optimal choice at each stage,
with the hope of finding a global optimum in a reasonable time. Results are shown in
Table I.

The most predictive features are the ones belonging to the tq family. This group
includes 44 features that capture many facets of the text structure that are indeed
good proxies for the answer quality. On the other hand, n features alone are the
worst performing; this is expected, as centrality metrics capture general expertise in a
content-agnostic way, so they do not embed information about the topic or structure of
the questions and answers. A similar consideration can be done for the user features
even though their performance is sensibly higher than the network features. This
supports the findings in previous work [Chen and Nayak 2008], which found simple
user features such as the percentage of best answers very predictive of the level of
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Table I. Predictive Power of the Learning to Rank Framework Trained
on Different Feature Subsets on the Yahoo Answers 2011 Dataset

Features P@1 MRR DCG
BM25 0.4161±3·10−4 0.5549±3·10−4 0.6585±3·10−4

[Agichtein et al. 2008] 0.5256±3·10−4 0.6389±2·10−4 0.6975±3·10−4

[Dalip et al. 2013] 0.5971±3·10−4 0.7262±2·10−4 0.7931±3·10−4

tq 0.5454±3·10−4 0.7178±3·10−4 0.7815±3·10−4

ls 0.5297±3·10−4 0.7079±3·10−4 0.7768±3·10−4

ds 0.4944±3·10−4 0.6919±3·10−4 0.7722±3·10−4

u 0.5376±3·10−4 0.7165±3·10−4 0.7915±3·10−4

n 0.4582±3·10−4 0.6808±3·10−4 0.7646±4·10−4

tq+u 0.6361±3·10−4 0.7758±3·10−4 0.8416±3·10−4

tq+n 0.6021±3·10−4 0.7529±3·10−4 0.8237±3·10−4

tq+ds 0.5697±3·10−4 0.7310±3·10−4 0.8073±3·10−4

tq+ls 0.5670±3·10−4 0.7286±3·10−4 0.8056±3·10−4

tq+u+n 0.6575±3·10−4 0.7900±3·10−4 0.8533±4·10−4

tq+u+ds 0.6370±3·10−4 0.7770±3·10−4 0.8438±3·10−4

tq+u+ls 0.6357±3·10−4 0.7753±3·10−4 0.8417±3·10−4

tq+u+n+ds 0.6612±3·10−4 0.7918±3·10−4 0.8545±3·10−4

tq+u+n+ls 0.6577±3·10−4 0.7900±3·10−4 0.8528±3·10−4

all 0.6632±3·10−4 0.7954±3·10−4 0.8554±3·10−4

Note: Feature families are text quality (tq), linguistic similarity (ls),
distributional semantics (ds), user (u), and expertise network (n). Best
feature combinations in each section of the table are in bold. The 99%
confidence intervals are reported.

user expertise. Finally, ls features outperform the ds features, when used in isolation;
this may be mainly due to the very different dimensionality of the feature sets, as
distributional semantics include a set of just six features. Regarding the baselines, we
note, as expected, that an approach that is not specifically tailored on the task like
BM25 performs poorly. The method from Agichtein et al. [2008] also has a performance
that is lower than the ones obtained by the single-feature families, partially because of
the different training procedure but mainly because it is trained with a set of features
that is smaller than the ones that we consider inside each family. The best-performing
baseline is Dalip’s learning to rank framework [Dalip et al. 2013], which achieve a
higher precision at 1 even compared with our framework when trained on single-
feature families; its superiority no longer holds when two or more feature families are
combined.

When combining features in pairs, interesting patterns emerge. Even though tq and
ls are the best performing individually, their combination improves the performance
only slightly, as the signal that they bring is very overlapping. Indeed, their combina-
tion is the worst performing among all feature pairings. The same happens with ds
features. Additionally, n and especially u features are instead more orthogonal to the
tq information and are able to boost performance considerably. Most importantly, we
find that n and u features carry predictive information that is nonoverlapping, as the
combination of both with tq features results in further noticeable improvement.

Combinations of three feature groups or more make clear that despite the high
informativeness on their own, the ls features give a fairly small contribution to the
performance, and replacing them with ds features leads even to a small improvement.
Given that the time of computation of the ls features is roughly 12 times more than the
ds ones (as empirically measured in our test), it appears that ds features are stronger
and more lightweight (they are very few) and therefore are a more viable alternative.
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Table II. Ablation Test

Feature �

tq: Preposition count 0.0484
tq: Verbs not in question 0.0468
tq: Nouns not in question 0.0463
tq: Unique words in answer 0.0441
tq: Pronouns count 0.0415
tq: Punctuation count 0.0406
tq: Average words per sentence 0.0402
ds: Random indexing on Yahoo Answers 0.0394
ls: Super-senses overlap 0.0371
tq: Adjectives not in question 0.0362
tq: Conjunctions count 0.0357
tq: “To be” count 0.0354
tq: Capitalized words count 0.0351
ls: Lemma overlap 0.0346
ls: Stem overlap 0.0342
tq: Auxiliary verbs count 0.0341
ls: Term overlap 0.0325
ls: Super-senses BM25 0.0318
n: Indegree on CBEN 0.0307
u: Answerer’s best answer ratio 0.0304
Note: � measures the loss of performance in MRR
when the feature is removed, when the full set of
features is employed. Prefixes in names indicate
the family of the feature.

The MRR score obtained with the combination of all feature groups is a 10% im-
provement over the baseline, whereas the P@1 score is an 11% improvement and the
DCG score is an 8% improvement.

Besides the greedy aggregation of feature families, to discover which single features
give the best signal for the prediction, we run an ablation test to measure the perfor-
mance decrease � in the prediction when single features are removed from the set. The
20 ones with the highest values of � are reported in Table II. We note that although
tq features tend to dominate, one feature from ds and one from n make it into the top
20 (8th and 19th, respectively).

As final remark, we note that when plotting the MRR and DCG for rankings that
include the top n results only (Figure 8), we see that the values tend to increase
considerably in the first positions of the ranking, meaning that the best answer, if not
ranked as first, is usually ranked among the top two or three answers.

4.4.2. Performance on Yahoo Answers Manner Questions. The last two baselines that we
consider (Surdeanu et al. [2011] and Hieber and Riezler [2011]) have been applied to
the smaller Yahoo Answers Manner Questions dataset described in Section 4.2. To get
a fair comparison with them, we replicate their same experimental setup on the same
dataset and repeat the greedy feature family combination as described earlier. An RF
model is learned for each feature set, and performances are reported in Table III. We
performed a 10-fold cross validation exactly like the previous dataset (see Section 4.4).

All three groups improve over the baseline significantly both in P@1 and MRR, with
tq being the most effective. It is worth noticing that the distributed representation–
based feature alone can compete with the other two groups of features, which are
composed of 42 features for tq and 74 for ls.
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Fig. 8. MRR and DCG computed for the first n positions of the ranking, for the different features families,
plus the BM25 baseline and the full set of features. The 99% confidence intervals are all in the range
[2.6 · 10−4, 3.6 · 10−4] and thus are too small to be represented in the figure.

Table III. Predictive Power of the Learning to Rank Framework
Trained on Different Feature Subsets on the Yahoo

Answers Manner Questions Dataset

Features P@1 MRR DCG
BM25 0.4118±2·10−4 0.5612±3·10−4 0.6126±3·10−4

Surdeanu et al. [2011] 0.5091±3·10−4 0.6465±3·10−4 -
Hieber and Riezler [2011] 0.4844±3·10−4 0.6676±3·10−4 -

ds 0.6269±2·10−4 0.7838±3·10−4 0.8348±3·10−4

ls 0.6329±3·10−4 0.7869±3·10−4 0.8389±3·10−4

tq 0.6392±3·10−4 0.8001±3·10−4 0.8501±3·10−4

ds+ls 0.6333±3·10−4 0.7787±3·10−4 0.8384±3·10−4

ds+tq 0.6685±3·10−4 0.8071±3·10−4 0.8573±3·10−4

ls+tq 0.6552±3·10−4 0.8005±3·10−4 0.8504±3·10−4

ds+ls+tq 0.6680±3·10−4 0.8070±3·10−4 0.8576±3·10−4

Note: The 99% confidence intervals are reported.

Taking into account the combinations of features, we observe that the best-
performing one is the composition of ds and tq. The combination of ds and ls leads to
an improvement of 0.0004 for P@1 over the ls group alone, a nonstatistically significant
improvement. This is expected, as both groups try to intercept the topical similarity
between question and answer.

The most interesting result that can be observed is that adding the ls group to the
previous best-scoring group ds+tq only improves the performance of 0.0003 for DCG,
again a nonstatistically significant improvement. This finding suggests that in this
setting, the linguistic features, requiring a really expensive preprocessing time to be
computed, can be substituted with a single feature based on distributed representations
of words without any loss of accuracy.

Finally, the best P@1 scores obtained with the ds+tq and ds+tq+ls feature groups
are a 31% improvement over the state of the art (best of the three baselines), whereas
the best MRR scores obtained with the ds+tq+ls features group are an improvement
of 19% over the state of the art.

4.4.3. Feature Analysis. We analyzed in more the detail the results of the ablation test,
focusing on the newly proposed features.
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Table IV. Distributional Semantics–Based Features Ablation Ranking

Feature Rank
ds: Random indexing on Yahoo Answers 8
ds: Continuous skip-gram model on Yahoo Answers 30
ds: LSA on Wikipedia 38
ds: LSA after random indexing on Wikipedia 39
ds: Random indexing on Wikipedia 40
ds: Continuous skip-gram model on Wikipedia 41
ds: LSA after random indexing on Yahoo Answers 88
ds: LSA on Yahoo Answers 90

Table V. Network Features Ablation Ranking

Feature Rank
n: Indegree on CBEN 19
n: Hits on CBEN 34
n: Indegree on ABAN 100
n: Hits on ABAN 108
n: Indegree on ARN 162
n: Hits on ARN 163
n: PageRank on ARN 171
n: PageRank on CBEN 183
n: PageRank on ABAN 184

Considering the features based on distributional semantics (ds), reported in Table IV,
we can clearly see that the best-performing feature, RI on Yahoo Answers, ranks 8th.
This is encouraging and suggests that the adoption of textual data coming from the
dataset itself is helpful. The continuous skip-gram model on the same datasets is the
second best one, ranking 30th, supporting the suggestion of the RI feature. The other
two features using models learned on the same dataset rank 88th (LSA over RI) and
90th (LSA), almost in the middle of the ranking. The difference with respect to RI
suggests that probably the number of dimensions (400) is not an appropriate choice for
the LSA, and an optimization of this parameter could lead to improvements.

The features that adopt Wikipedia as a text source for learning the models rank
really close: 38th for LSA, 39th for LSA over RI, 40th for the continuous skip-gram
model, and 41st for RI. This suggests that the differences in models, in this case, are
less influent than the dataset itself. As Wikipedia contains more than 4M articles, the
huge quantity of text in this dataset leads to similarly behaving models.

Considering the network-based features (n), reported in Table V, the best-performing
network structure is the CBENs. Two features based on models calculated on this
network are the top ranked: indegree on CBEN is 19th, and Hits on CBEN is 34th.
The same two models calculated on the ABAN are ranked in the middle of the ranking,
100th and 108th, respectively, whereas those calculated on the ARN are ranked lower
in the ranking, 162nd and 163rd. The fact that both models, the simple indegree and
the Hits authority, are found really close in the ranking suggests that they behave
in a very similar way. At the bottom of the ranking, we found the PageRank model
calculated on ARN (171st), on CBEN (183rd), and ABAN (184th). This suggests that
PageRank is not a good fit in this setting and leads to quite bad results.

4.4.4. Question Categories. Different types of questions may imply different notions
of a “high-quality” answer. To investigate this aspect, we get back to the bigger Yahoo
Answers 2011 dataset and break down the performance of the different feature families
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Table VI. MRR Scores Obtained with Single-Feature Families
on the Yahoo Answers 2011 Dataset

Factual Subjective Discussion Poll
tq 0.7490±3·10−4 0.7397±3·10−4 0.6836±3·10−4 0.6924±3·10−4

ls 0.7399±3·10−4 0.7273±3·10−4 0.6636±3·10−4 0.6505±3·10−4

ds 0.7040±3·10−4 0.6899±3·10−4 0.6532±3·10−4 0.6658±3·10−4

u 0.7378±3·10−4 0.7276±3·10−4 0.6880±3·10−4 0.7034±3·10−4

n 0.7164±2·10−4 0.7109±2·10−4 0.6289±4·10−4 0.6372±2·10−4

all 0.8216±3·10−4 0.8059±3·10−4 0.7666±3·10−4 0.7800±3·10−4

Note: The 99% confidence intervals are reported.

by the four question categories that we defined in Section 4.2. For brevity, we report
the values for MRR only (P@1 and DCG follow the same trends) and limit the analysis
to feature families taken in isolation.

In agreement with previous work [Aslay et al. 2013], the best answer is more difficult
to predict for discussion and poll-type questions, as they are naturally less suited to
expert ranking. Best answers for factual and subjective questions are better surfaced
by the tq features, whereas the u features are dominating discussions and polls.

Focusing on the novel features that we introduce, we note their complementary
behavior, with ds better than n in polls and discussion (and even better than ls for
polls) but worse in factual and subjective questions. In addition, it is worth noting
that ds has the smaller variance in performance across categories. Detailed results are
provided in Table VI.

4.4.5. Different Algorithms. Our decision to use a pointwise approach like RF as a ranking
algorithm is based on the intuition that pairwise and listwise approaches are not likely
to be more effective because of the presence of only one correct answer for each question
in the dataset. This means that we have a number of equally wrong answers that we
cannot distinguish based on their relevance to the answer, so the full list of answers
is not likely to bring more information than the single answers. RF is supposed to be
quite resilient to overfitting when applied on large-scale training sets.

To assess that RF is indeed the best approach, we run the evaluations on the same
datasets with the same features using different algorithms.

We chose LR as an alternative pointwise approach because it was successfully
adopted in large-scale real-world QA scenarios [Ferrucci 2011]. For pairwise ap-
proaches, we chose RankSVM [Joachims 2002] as the algorithm to test against, as
SVMs were shown to be effective on the same Yahoo Answers Manner Questions dataset
[Surdeanu et al. 2011]. Finally, for a listwise approach, we chose to test against ListNet
[Cao et al. 2007]. For all of the algorithms, we tuned the hyperparameters from the
adopted libraries (RankLib6 and SVMLight7)—for example, regularization and kernel
for RankSVM and learning rate and number of epochs for ListNet.

The results in Table VII show only the trends for MRR using all of the features, but
the same trends are also present by changing the adopted feature set combination and
metric. LR is the worst-performing algorithm on all sets of questions, whereas among
RankSVM and ListNet, the difference is very small, with RankSVM obtaining slightly
higher results on all question sets but Poll. None of the alternative algorithms can

6http://sourceforge.net/p/lemur/wiki/RankLib/.
7http://svmlight.joachims.org.

ACM Transactions on Information Systems, Vol. 35, No. 1, Article 4, Publication date: September 2016.

http://sourceforge.net/p/lemur/wiki/RankLib/
http://svmlight.joachims.org


Social Question Answering: Textual, User, and Network Features for Best Answer Prediction 4:29

Table VII. MRR Scores Obtained with Different Learning to Rank
Algorithms on the Yahoo Answers 2011 Dataset

LR RankSVM ListNet RF
Manner 0.6964±2·10−4 0.7880±3·10−4 0.7705±3·10−4 0.7927±3·10−4

Factual 0.7418±3·10−4 0.7967±3·10−4 0.7814±3·10−4 0.8216±3·10−4

Subjective 0.7193±3·10−4 0.7834±3·10−4 0.7600±3·10−4 0.8059±4·10−4

Discussion 0.6891±3·10−4 0.7448±3·10−4 0.7245±4·10−4 0.7667±3·10−4

Poll 0.7037±3·10−4 0.7479±3·10−4 0.7498±3·10−4 0.7800±3·10−4

All 0.7177±3·10−4 0.7684±2·10−4 0.7650±3·10−4 0.7954±3·10−4

Note: The 99% confidence intervals are reported.

reach the performance levels reached by RF in any of the question sets, and this gives
some empirical evidence that our choice was reasonable.

5. CONCLUSIONS

We contribute to bring order to the vast literature on the task of best answer selection
by gathering the largest set of features considered for this task so far, grouped in five
families, combining them with a learning to rank approach, and testing them on large
datasets from Yahoo Answers. We propose a new suite of distributional semantics–
based features, in combination with the textual signal and the information from several
expertise networks. In addition to being able to outperform the prediction ability of
state-of-the-art methods up to 26% in P@1, our experiments allow us also to draw
important conclusions about the impact of different features employed that have never
been spelled out in previous literature due to a lack of extensive and systematic feature
comparison. We summarize our findings as follows:

—Textual features are by far the ones with higher predictive potential compared to
user-centric features or to the expertise network centrality scores. This is mainly
because the content of the questions and answers (their topic and structure) are a
more important source of information to determine the QA match rather than the
expertise of the answerers. Those features are preferred when dealing with factual-
type questions.

—Among the textual features, text quality and distributional semantics are generally
preferred to linguistic similarity. We indeed found that linguistic similarity’s signal is
mostly captured by other features already. This is an important finding, as linguistic
similarity features have been used in several previous approaches but are roughly
12 times more computationally expensive than distributional semantics ones.

—The new distributional semantics–based approach that we propose achieves surpris-
ingly good results considering the very small cardinality of its feature set.

—User and network features determine a considerable improvement over the textual-
based features, and their contribution is not completely overlapping, meaning that
considering network interaction rather than the individual user activity adds real
value to the prediction. When user or network information is available, it is advisable
to use it in combination with text-quality features instead of using different textual
features combined.

We believe that our work will help to take stock of the research on the task of best
answer prediction and set the basis for new developments in the field.
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APPENDIX

Table VIII. Visual Property Features

Group tq Subgroup visual property

Count of auxiliary verbs
Count of pronouns
Count of conjunctions
Count of prepositions
Count of occurrences of the verb “to be”
Count of punctuation marks
Minimum length of quoted text
Average length of quoted text
Maximum length of quoted text
Number of quotes
Number of sentences
Number of capitalized words
Number of characters
Number of whitespace violations (lack or redundancy)
Number of URLs
Number of words
Number of capitalization violations (i.e., no capital letter after sentence mark)
Number of question marks
Number of punctuation violations (lack or redundancy)
Number of whitespaces
Punctuation characters divided by all characters
Whitespace characters divided by all characters
Capital letters characters divided by all characters

Table IX. Readability Features

Group tq Subgroup readability

Average words per sentence
Average words length in syllables
Average words length in characters
Number of complex words divided by all words
Number of unique words
Average unique words per sentence
Flesch-Kinkaid grade level
Automated readability index
Coleman-Liau index
Flesch reading ease
Gunning-Fog index
LIX score
SMOG grade
Number of short sentences
Number of long sentences
Automated readability index of the question

Table X. Informativeness Features

Group tq Subgroup informativeness

Number of nouns present in the answer but not in the question
Number of verbs present in the answer but not in the question
Number of adjectives present in the answer but not in the question
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Table XI. Overlap Features

Group ls Subgroup overlap

Overlap of lemmas
Overlap of concatenations of lemmas and PoS tags
Overlap of named entities
Overlap of stems
Overlap of super-senses
Overlap of terms
Overlap of labeled dependencies with lemma lexicalization
Overlap of labeled dependencies with super-sense lexicalization
Overlap of unlabeled dependencies with lemma lexicalization
Overlap of unlabeled dependencies with super-sense lexicalization
Overlap of labeled semantic roles with lemma lexicalization
Overlap of labeled semantic roles with super-sense lexicalization
Overlap of unlabeled semantic roles with lemma lexicalization
Overlap of unlabeled semantic roles with super-sense lexicalization
Jaccard index of lemmas
Jaccard index of concatenations of lemmas and PoS tags
Jaccard index of named entities
Jaccard index of stems
Jaccard index of super-senses
Jaccard index of terms
Overlap of lemma bigrams
Overlap of bigrams of concatenations of lemmas and PoS tags
Overlap of stem bigrams
Overlap of super-sense bigrams
Overlap of term bigrams
Overlap of lemma trigrams
Overlap of trigrams of concatenations of lemmas and PoS tags
Overlap of stem trigrams
Overlap of super-sense trigrams
Overlap of term trigrams
Overlap of lemma tetragrams
Overlap of tetragrams of concatenations of lemmas and PoS tags
Overlap of stem tetragrams
Overlap of super-sense tetragrams
Overlap of term tetragrams

Table XII. Frequency Features

Group ls Subgroup frequency

BM25 with lemmas
BM25 with concatenations of lemmas and PoS tags
BM25 with stems
BM25 with super-senses
BM25 with terms
Language modeling with lemmas
Language modeling with concatenations of lemmas and PoS tags
Language modeling with stems
Language modeling with super-senses
Language modeling with terms
TF-IDF with lemmas
TF-IDF with concatenations of lemmas and PoS tags
TF-IDF with stems
TF-IDF with super-senses
TF-IDF with terms
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Table XIII. Density Features

Group ls Subgroup density

Density of lemmas
Density of concatenations of lemmas and PoS tags
Density of named entities
Density of stems
Density of super-senses
Density of terms

Table XIV. Machine Translation Features

Group ls Subgroup machine translation

Machine translation of lemmas
Machine translation of concatenations of lemmas and PoS tags
Machine translation of named entities
Machine translation of stems
Machine translation of super-senses
Machine translation of terms
Machine translation of labeled dependencies with lemma lexicalization
Machine translation of labeled dependencies with super-sense lexicalization
Machine translation of unlabeled dependencies with lemma lexicalization
Machine translation of unlabeled dependencies with super-sense lexicalization
Machine translation of labeled semantic roles with lemma lexicalization
Machine translation of labeled semantic roles with super-sense lexicalization
Machine translation of unlabeled semantic roles with lemma lexicalization
Machine translation of unlabeled semantic roles with super-sense lexicalization

Table XV. Other Features

Group ls Subgroup other

Number of consecutive overlapping words
Length of the answer divided by the length of question (in characters)
1 divided by the length of the answer
1 divided by the length of the question

Table XVI. Distributional Semantics–Based Features

Group ls Subgroup distributional semantics

Semantic similarity using the LSA on Wikipedia corpus
Semantic similarity using the random indexing on Wikipedia corpus
Semantic similarity using the LSA after random indexing on Wikipedia corpus
Semantic similarity using the continuous skip-gram model on Wikipedia corpus
Semantic similarity using the LSA on Yahoo Answers corpus
Semantic similarity using the random indexing on Yahoo Answers corpus
Semantic similarity using the LSA after random indexing on Yahoo Answers corpus
Semantic similarity using the continous skip-gram model on Yahoo Answers corpus

Table XVII. User Profile Features

Group u Subgroup profile

Presence of a resume in the user profile (1 if present, 0 otherwise)
Length of the resume (in characters)
Presence of a title in the user profile (1 if present, 0 otherwise)
Presence of a picture in the user profile (1 if present, 0 otherwise)
Time since the account creation
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Table XVIII. Question-Answer Features

Group u Subgroup question answer

Number of (not deleted) questions asked by the user
Number of deleted questions asked by the user
Number of answered questions asked by the user
Number of flagged questions asked by the user
Number of questions with a star asked by the user
Number of (not deleted) questions asked by the user divided by the time since the account creation
Number of deleted questions asked by the user divided by the time since the account creation
Number of answered questions asked by the user divided by the time since the account creation
Number of flagged questions asked by the user divided by the time since the account creation
Number of questions with a star asked by the user divided by the time since the account creation
Number of (not deleted) questions divided by all questions asked by the user
Number of deleted questions divided by all questions of the user
Number of answered questions divided by all questions asked by the user
Number of flagged questions divided by all questions asked by the user
Number of questions with a star divided by all questions asked by the user
Minimum automatic readability index of questions asked by the user
Maximum automatic readability index of questions asked by the user
Average automatic readability index of questions asked by the user
Number of questions divided by number of answers given by the user
Number of (not deleted) answers given by the user
Number of deleted answers given by the user
Number of best answers given by the user
Number of flagged questions asked by the user
Number of (not deleted) answers given by the user divided by the time since the account creation
Number of deleted answers given by the user divided by the time since the account creation
Number of best answers given by the user divided by the time since the account creation
Number of flagged answers given by the user divided by the time since the account creation
Number of (not deleted) answers divided by all answers given by the user
Number of deleted answers divided by all answers given by the user
Number of best answers divided by all answers given by the user
Number of flagged answers divided by all answers given by the user
Number of positive votes that the answers given by the user have received
Number of negative votes that the answers given by the user have received
Difference of positive and negative votes that the answers given by the user have received
Number of positive votes divided by number of negative votes that the answers given by the user have received
Minimum automatic readability index of answers given by the user
Maximum automatic readability index of answers given by the user
Average automatic readability index of answers given by the user
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Table XIX. Category Features

Group u Subgroup category

Number of (not deleted) questions asked by the user in the category of the question
Number of deleted questions asked by the user in the category of the question
Number of answered questions asked by the user in the category of the question
Number of flagged questions asked by the user in the category of the question
Number of questions with a star asked by the user in the category of the question
Number of (not deleted) questions asked by the user divided by the time since the account creation in the

category of the question
Number of deleted questions asked by the user divided by the time since the account creation in the category

of the question
Number of answered questions asked by the user divided by the time since the account creation in the

category of the question
Number of flagged questions asked by the user divided by the time since the account creation in the category

of the question
Number of questions with a star asked by the user divided by the time since the account creation in the

category of the question
Number of (not deleted) questions divided by all questions asked by the user in the category of the question
Number of deleted questions divided by all questions of the user in the category of the question
Number of answered questions divided by all questions asked by the user in the category of the question
Number of flagged questions divided by all questions asked by the user in the category of the question
Number of questions with a star divided by all questions asked by the user in the category of the question
Minimum automatic readability index of questions asked by the user in the category of the question
Maximum automatic readability index of questions asked by the user in the category of the question
Average automatic readability index of questions asked by the user in the category of the question
Number of questions divided by number of answers given by the user in the category of the question
Number of (not deleted) answers given by the user in the category of the question
Number of deleted answers given by the user in the category of the question
Number of best answers given by the user in the category of the question
Number of flagged questions asked by the user in the category of the question
Number of (not deleted) answers given by the user divided by the time since the account creation in the

category of the question
Number of deleted answers given by the user divided by the time since the account creation in the category of

the question
Number of best answers given by the user divided by the time since the account creation in the category of the

question
Number of flagged answers given by the user divided by the time since the account creation in the category of

the question
Number of (not deleted) answers divided by all answers given by the user in the category of the question
Number of deleted answers divided by all answers given by the user in the category of the question
Number of best answers divided by all answers given by the user in the category of the question
Number of flagged answers divided by all answers given by the user in the category of the question
Number of positive votes that the answers given by the user have received in the category of the question
Number of negative votes that the answers given by the user have received in the category of the question
Difference of positive and negative votes that the answers given by the user have received in the category of

the question
Positive/negative vote ratio for the answers given by the user have received in the category of the question
Minimum automatic readability index of answers given by the user in the category of the question
Maximum automatic readability index of answers given by the user in the category of the question
Average automatic readability index of answers given by the user in the category of the question
Entropy of the vector constructed by counting the number of questions in each category
Entropy of the vector constructed by counting the number of answers in each category
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Table XX. Behavioral Features

Group u Subgroup behavioral

Internal Yahoo Answer authority score of the user
Number of flags given by the user
Number of positive votes given by the user
Number of negative votes given by the user
Difference between the number of positive votes and the number of negative votes given by the user
Number of positive votes divided by the number of negative votes given by the user
Time between the question is posted and the answer is given by the user
Number of answers given to this question

Table XXI. Network Features

Group n Subgroup arn - aban - cben

Indegree of the user in the ARN
PageRank of the user in the ARN
Hits Authority of the user in the ARN
Indegree of the user in the best answerer network
PageRank of the user in the best answerer network
Hits Authority of the user in the best answerer network
Indegree of the user in the CBEN
PageRank of the user in the CBEN
Hits Authority of the user in the CBEN
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We are grateful to Çiğdem Aslay for her precious suggestions and support in gathering the data.

REFERENCES

Lada A. Adamic, Jun Zhang, Eytan Bakshy, and Mark S. Ackerman. 2008. Knowledge sharing and Yahoo
Answers: Everyone knows something. In Proceedings of the 17th International Conference on World Wide
Web (WWW’08). 665–674.

Eugene Agichtein, Carlos Castillo, Debora Donato, Aristides Gionis, and Gilad Mishne. 2008. Finding high-
quality content in social media. In Proceedings of the International Conference on Web Search and Data
Mining (WSDM’08). ACM, New York, NY, 183–194.

Ashton Anderson, Daniel Huttenlocher, Jon Kleinberg, and Jure Leskovec. 2012. Discovering value from
community activity on focused question answering sites: A case study of stack overflow. In Proceedings
of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’12).
ACM, New York, NY, 850–858. DOI:http://dx.doi.org/10.1145/2339530.2339665

Andrea Andrenucci and Eriks Sneiders. 2005. Automated question answering: Review of the main ap-
proaches. In Proceedings of the International Conference on Information Technology and Applications.
514–519. DOI:http://dx.doi.org/10.1109/ICITA.2005.78
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Daniel Hasan Dalip, Marcos André Gonçalves, Marco Cristo, and Pável Calado. 2013. Exploiting user feed-
back to learn to rank answers in Q&A forums: A case study with stack overflow. In Proceedings of
the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR’13). 543–552.

ACM Transactions on Information Systems, Vol. 35, No. 1, Article 4, Publication date: September 2016.

http://dx.doi.org/10.1016/j.jbi.2009.09.003


Social Question Answering: Textual, User, and Network Features for Best Answer Prediction 4:37

S. Dasgupta and A. Gupta. 1999. An Elementary Proof of the Johnson-Lindenstrauss Lemma. Technical
Report TR-99-006. International Computer Science Institute, Berkeley, CA.

David Dearman and Khai N. Truong. 2010. Why users of Yahoo! Answers do not answer questions. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’10). ACM, New
York, NY, 329–332. DOI:http://dx.doi.org/10.1145/1753326.1753376

Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas, and Richard A. Harshman.
1990. Indexing by latent semantic analysis. Journal of the American Society for Information Science 41,
6, 391–407.

Byron Dom, Iris Eiron, Alex Cozzi, and Yi Zhang. 2003. Graph-based ranking algorithms for e-mail expertise
analysis. In Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and
Knowledge Discovery (DMKD’03). ACM, New York, NY, 42–48.

Gideon Dror, Yehuda Koren, Yoelle Maarek, and Idan Szpektor. 2011. I want to answer; who has a ques-
tion? Yahoo! Answers recommender system. In Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (DMKD’11). ACM, New York, NY, 1109–1117.
DOI:http://dx.doi.org/10.1145/2020408.2020582

Abdessamad Echihabi and Daniel Marcu. 2003. A noisy-channel approach to question answering. In Pro-
ceedings of the 41st Annual Meeting of the Association for Computational Linguistics. 16–23.

Brynn M. Evans and Ed H. Chi. 2008. Towards a model of understanding social search. In Proceedings of
the 2008 ACM Conference on Computer Supported Cooperative Work (CSCW’08). ACM, New York, NY,
485–494. DOI:http://dx.doi.org/10.1145/1460563.1460641

David A. Ferrucci. 2011. IBM’s Watson/DeepQA. SIGARCH Computer Architecture News 39, 33, Article
No. 1.

Peter W. Foltz, Darrell Laham, and Thomas K. Landauer. 1999. The intelligent essay assessor: Applications
to educational technology. Interactive Multimedia Electronic Journal of Computer-Enhanced Learning
1, 2, 939–944.

Jill Freyne, Rosta Farzan, Peter Brusilovsky, Barry Smyth, and Maurice Coyle. 2007. Collecting com-
munity wisdom: Integrating social search and social navigation. In Proceedings of the 12th Interna-
tional Conference on Intelligent User Interfaces (IUI’07). ACM, New York, NY, 52–61. DOI:http://dx.
doi.org/10.1145/1216295.1216312

Yupeng Fu, Rongjing Xiang, Yiqun Liu, Min Zhang, and Shaoping Ma. 2007. Finding experts using social net-
work analysis. In Proceedings of the 2007 IEEE/WIC/ACM International Conference on Web Intelligence
(WI’07). IEEE, Los Alamitos, CA, 77–80.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic labeling of semantic roles. Computational Linguistics
28, 3, 245–288.

Alexandru-Lucian Gı̂nsca and Adrian Popescu. 2013. User profiling for answer quality assessment in Q&A
communities. In Proceedings of the 2013 Workshop on Data-Driven User Behavioral Modelling and
Mining from Social Media (DUBMODCIKM’13). ACM, New York, NY, 25–28.

Zoltan Gyongyi, Georgia Koutrika, Jan Pedersen, and Hector Garcia-Molina. 2007. Questioning Yahoo!
Answers. Technical Report 2007-35. Stanford InfoLab, Stanford, CA.

F. Maxwell Harper, Daniel Moy, and Joseph A. Konstan. 2009. Facts or friends? Distinguishing informational
and conversational questions in social Q&A sites. In Proceedings of the 27th International Conference
on Human Factors in Computing Systems (CHI’09). ACM, New York, NY, 759–768.

Felix Hieber and Stefan Riezler. 2011. Improved answer ranking in social question-answering portals. In
Proceedings of the 3rd International CIKM Workshop on Search and Mining User-Generated Contents
(SMUC’11). ACM, New York, NY, 19–26.

Damon Horowitz and Sepandar D. Kamvar. 2010. The anatomy of a large-scale social search engine. In
Proceedings of the 19th International Conference on World Wide Web (WWW’10). Raleigh, North Carolina.
ACM, New York, NY, 431–440.

Shaili Jain, Yiling Chen, and David C. Parkes. 2009. Designing incentives for online question and answer
forums. In Proceedings of the 10th ACM Conference on Electronic Commerce (EC’09). ACM, New York,
NY, 129–138. DOI:http://dx.doi.org/10.1145/1566374.1566393

Xiao-Ling Jin, Zhongyun Zhou, Matthew K. O. Lee, and Christy M. K. Cheung. 2013. Why users
keep answering questions in online question answering communities: A theoretical and empirical
investigation. International Journal of Information Management 33, 1, 93–104. DOI:http://dx.doi.
org/10.1016/j.ijinfomgt.2012.07.007

Thorsten Joachims. 2002. Optimizing search engines using clickthrough data. In Proceedings of the 8th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, New York,
NY, 133–142.

ACM Transactions on Information Systems, Vol. 35, No. 1, Article 4, Publication date: September 2016.

http://dx.doi.org/10.1145/1753326.1753376
http://dx.doi.org/10.1145/2020408.2020582
http://dx.doi.org/10.1145/1460563.1460641
http://dx.doi.org/10.1145/1216295.1216312
http://dx.doi.org/10.1145/1216295.1216312
http://dx.doi.org/10.1145/1566374.1566393
http://dx.doi.org/10.1016/j.ijinfomgt.2012.07.007
http://dx.doi.org/10.1016/j.ijinfomgt.2012.07.007


4:38 P. Molino et al.

William B. Johnson and Joram Lindenstrauss. 1984. Extensions of Lipschitz mappings into a Hilbert space.
Contemporary Mathematics 26, 189–206.

Michael N. Jones and Douglas J. K. Mewhort. 2007. Representing word meaning and order information in a
composite holographic lexicon. Psychological Review 114, 1, 1–37.

Pawel Jurczyk and Eugene Agichtein. 2007. Discovering authorities in question answer communities by using
link analysis. In Proceedings of the 16th ACM Conference on Information and Knowledge Management
(CIKM’07). ACM, New York, NY, 919–922.

Yutaka Kabutoya, Tomoharu Iwata, Hisako Shiohara, and Ko Fujimura. 2010. Effective question recom-
mendation based on multiple features for question answering communities. In Proceedings of the 4th
International AAAI Conference on Weblogs and Social Media.

Pentti Kanerva. 1988. Sparse Distributed Memory. MIT Press, Cambridge MA.
Wei-Chen Kao, Duen-Ren Liu, and Shiu-Wen Wang. 2010. Expert finding in question-answering Web sites:

A novel hybrid approach. In Proceedings of the 2010 ACM Symposium on Applied Computing (SAC’10).
ACM, New York, NY, 867–871.

Jussi Karlgren and Magnus Sahlgren. 2001. From words to understanding. In Foundations of Real-World
Intelligence, Y. Uesaka, P. Kanerva, and H. Asoh (Eds.). CSLI Publications, Stanford, CA, 294–308.

Jon M. Kleinberg. 1999. Hubs, authorities, and communities. ACM Computing Surveys 31, 4, 5.
Thomas K. Landauer and Susan T. Dumais. 1997. A solution to Plato’s problem: The latent semantic analysis

theory of acquisition, induction, and representation of knowledge. Psychological Review 104, 2, 211–240.
Theodoros Lappas, Kun Liu, and Evimaria Terzi. 2009. Finding a team of experts in social networks. In

Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, New York, NY, 467–476.

Baichuan Li and Irwin King. 2010. Routing questions to appropriate answerers in community question an-
swering services. In Proceedings of the 19th ACM International Conference on Information and Knowl-
edge Management (CIKM’10). 1585–1588.

Baichuan Li, Irwin King, and Michael R. Lyu. 2011. Question routing in community question answering:
Putting category in its place. In Proceedings of the 20th ACM International Conference on Information
and Knowledge Management (CIKM’11). 2041–2044. DOI:http://dx.doi.org/10.1145/2063576.2063885

Jimmy Lin and Boris Katz. 2003. Question answering from the Web using knowledge annotation and
knowledge mining techniques. In Proceedings of the 12th International Conference on Informa-
tion and Knowledge Management (CIKM’03). ACM, New York, NY, 116–123. DOI:http://dx.doi.org/
10.1145/956863.956886

Jing Liu, Young-In Song, and Chin-Yew Lin. 2011. Competition-based user expertise score estimation. In Pro-
ceedings of the 34th International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR’11). ACM, New York, NY, 425–434.

Mingrong Liu, Yicen Liu, and Qing Yang. 2010. Predicting best answerers for new questions in commu-
nity question answering. In Web-Age Information Management. Lecture Notes in Computer Science,
Vol. 6184. Springer, 127–138. DOI:http://dx.doi.org/10.1007/978-3-642-14246-8_15

Tie-Yan Liu. 2011. Learning to Rank for Information Retrieval. Springer.
Xiaoyong Liu, W. Bruce Croft, and Matthew B. Koll. 2005. Finding experts in community-based question-

answering services. In Proceedings of the 2005 ACM CIKM International Conference on Information and
Knowledge Management. ACM, New York, NY, 315–316.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. 2013a. Distributed repre-
sentations of words and phrases and their compositionality. In Proceedings of the 27th Annual Conference
on Neural Information Processing Systems. 3111–3119.

Tomas Mikolov, WenTau Yih, and Geoffrey Zweig. 2013b. Linguistic regularities in continuous space word
representations. In Proceedings of the Conference of the North American Chapter of the Association of
Computational Linguistics. 746–751.

Jeff Mitchell and Mirella Lapata. 2010. Composition in distributional models of semantics. Cognitive Science
34, 8, 1388–1429.

Ananth Mohan, Zheng Chen, and Kilian Q. Weinberger. 2011. Web-search ranking with initialized gradient
boosted regression trees. In Proceedings of the Yahoo! Learning to Rank Challenge. 77–89.

Christof Monz. 2004. Minimal span weighting retrieval for question answering. In Proceedings of the SIGIR
2004 Workshop on Information Retrieval for Question Answering. 23–30.

Meredith Ringel Morris, Jaime Teevan, and Katrina Panovich. 2010. A comparison of information seeking
using search engines and social networks. In Proceedings of the 4th International AAAI Conference on
Weblogs and Social Media. 291–294.

ACM Transactions on Information Systems, Vol. 35, No. 1, Article 4, Publication date: September 2016.

http://dx.doi.org/10.1145/2063576.2063885
http://dx.doi.org/10.1145/956863.956886
http://dx.doi.org/10.1145/956863.956886
http://dx.doi.org/10.1007/978-3-642-14246-8_15


Social Question Answering: Textual, User, and Network Features for Best Answer Prediction 4:39

Kevin Kyung Nam, Mark S. Ackerman, and Lada A. Adamic. 2009. Questions in, knowledge in? A
study of Naver’s question answering community. In Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems (CHI’09). ACM, New York, NY, 779–788. DOI:http://dx.doi.org/
10.1145/1518701.1518821

Michael G. Noll, Ching-Man Au Yeung, Nicholas Gibbins, Christoph Meinel, and Nigel Shadbolt. 2009.
Telling experts from spammers: Expertise ranking in folksonomies. In Proceedings of the 32nd Annual
International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’09).
ACM, New York, NY, 612–619.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The PageRank Citation Ranking:
Bringing Order to the Web. Technical Report 1999-66. Stanford InfoLab, Stanford, CA.

Katrina Panovich, Rob Miller, and David R. Karger. 2012. Tie strength in question and answer on social
network sites. In Proceedings of the Conference on Computer Supported Cooperative Work (CSCW’12).
ACM, New York, NY, 1057–1066.

Fatemeh Riahi, Zainab Zolaktaf, M. Mahdi Shafiei, and Evangelos E. Milios. 2012. Finding expert users in
community question answering. In Proceedings of the 21st International Conference on World Wide Web
(WWW’12 Companion). 791–798.

Stefan Riezler, Alexander Vasserman, Ioannis Tsochantaridis, Vibhu O. Mittal, and Yi Liu. 2007. Statistical
machine translation for query expansion in answer retrieval. In Proceedings of the 45th Annual Meeting
of the Association for Computational Linguistics (ACL’07).

Magnus Sahlgren. 2005. An introduction to random indexing. In Proceedings of the Methods and Applications
of Semantic Indexing Workshop at the 7th International Conference on Terminology and Knowledge
Engineering.

Magnus Sahlgren. 2006. The Word-Space Model: Using Distributional Analysis to Represent Syntagmatic
and Paradigmatic Relations Between Words in High-Dimensional Vector Spaces. Ph.D. Dissertation.
Stockholm University, Stockholm, Sweden.

G. M. Salton, A. Wong, and C. S. Yang. 1975. A vector space model for automatic indexing. Communications
of the ACM 18, 11, 613–620.

Hinrich Schütze. 1998. Automatic word sense discrimination. Computational Linguistics 24, 1, 97–123.
Hinrich Schütze and Jan O. Pedersen. 1995. Information retrieval based on word senses. In Proceedings of

the 4th Annual Symposium on Document Analysis and Information Retrieval. 161–175.
Linus Sellberg and Arne Jönsson. 2008. Using random indexing to improve singular value decomposition

for latent semantic analysis. In Proceedings of the International Conference on Language Resources and
Evaluation (LREC’08)

Pavel Serdyukov and Djoerd Hiemstra. 2008. Modeling documents as mixtures of persons for expert finding.
In Advances in Information Retrieval. Lecture Notes in Computer Science, Vol. 4956. Springer, 309–320.

Pavel Serdyukov, Henning Rode, and Djoerd Hiemstra. 2008. Modeling multi-step relevance propagation for
expert finding. In Proceedings of the 17th ACM Conference on Information and Knowledge Management
(CIKM’08). ACM, New York, NY, 1133–1142.

Aliaksei Severyn and Alessandro Moschitti. 2012. Structural relationships for large-scale learning of an-
swer re-ranking. In Proceedings of the 35th International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR’12). 741–750.

Elena Smirnova and Krisztian Balog. 2011. A user-oriented model for expert finding. In Advances in Infor-
mation Retrieval. Lecture Notes in Computer Science, Vol. 6611. Springer, 580–592.

Paul Smolensky. 1990. Tensor product variable binding and the representation of symbolic structures in
connectionist systems. Artificial Intelligence 46, 1–2, 159–216.

Mark D. Smucker, James Allan, and Ben Carterette. 2007. A comparison of statistical significance tests
for information retrieval evaluation. In Proceedings of the 16th ACM Conference on Information and
Knowledge Management (CIKM’07). 623–632.

Mihai Surdeanu, Massimiliano Ciaramita, and Hugo Zaragoza. 2011. Learning to rank answers to non-
factoid questions from Web collections. Computational Linguistics 37, 2, 351–383.

Joseph P. Turian, Lev-Arie Ratinov, and Yoshua Bengio. 2010. Word representations: A simple and general
method for semi-supervised learning. In Proceedings of the 48th Annual Meeting of the Association for
Computational Linguistics (ACL’10). 384–394.

Peter D. Turney. 2006. Similarity of semantic relations. Computational Linguistics 32, 3, 379–416.
Peter D. Turney and Michael L. Littman. 2005. Corpus-based learning of analogies and semantic relations.

Machine Learning 60, 1–3, 251–278.
Peter D. Turney and Patrick Pantel. 2010. From frequency to meaning: Vector space models of semantics.

Journal of Artificial Intelligence Research 37, 141–188.

ACM Transactions on Information Systems, Vol. 35, No. 1, Article 4, Publication date: September 2016.

http://dx.doi.org/10.1145/1518701.1518821
http://dx.doi.org/10.1145/1518701.1518821


4:40 P. Molino et al.

Suzan Verberne, Lou Boves, Nelleke Oostdijk, and Peter-Arno Coppen. 2008. Using syntactic information
for improving why-question answering. In Proceedings of the 22nd International Conference on Compu-
tational Linguistics (COLING’08). 953–960.

Suzan Verberne, Lou Boves, Nelleke Oostdijk, and Peter-Arno Coppen. 2010. What is not in the bag of words
for Why-QA? Computational Linguistics 36, 2, 229–245.

Suzan Verberne, Hans van Halteren, Daphne Theijssen, Stephan Raaijmakers, and Lou Boves. 2011. Learn-
ing to rank for why-question answering. Information Retrieval 14, 2, 107–132.

Dominic Widdows and Kathleen Ferraro. 2008. Semantic vectors: A scalable open source package and on-
line technology management application. In Proceedings of the International Conference on Language
Resources and Evaluation (LREC’08).

Ludwig Wittgenstein. 1953. Philosophische Untersuchungen. Suhrkamp Verlag, Frankfurt am Main.
M. B. W. Wolfe, M. E. Schreiner, B. Rehder, D. Laham, P. W. Foltz, W. Kintsch, and T. K. Landauer. 1998.

Learning from text: Matching readers and texts by latent semantic analysis. Discourse Processes 25,
2–3, 309–336.

Wen-Tau Yih, Ming-Wei Chang, Christopher Meek, and Andrzej Pastusiak. 2013. Question answering using
enhanced lexical semantic models. In Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics (ACL’13). 1744–1753.

Cheng-Xiang Zhai and John D. Lafferty. 2001. A study of smoothing methods for language models applied to
ad hoc information retrieval. In Proceedings of the 24th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR’01). ACM, New York, NY, 334–342.

Jun Zhang, Mark S. Ackerman, and Lada Adamic. 2007a. CommunityNetSimulator: Using simulations to
study online community networks. In Communities and Technologies 2007, C. Steinfield, B. T. Pentland,
M. Ackerman, and N. Contractor (Eds.). Springer, London, UK, 295–321.

Jing Zhang, Jie Tang, and Juan-Zi Li. 2007b. Expert finding in a social network. In Advances in Databases.
Lecture Notes in Computer Science, Vol. 4443. Springer, 1066–1069.

Guangyou Zhou, Yang Liu, Fang Liu, Daojian Zeng, and Jun Zhao. 2013. Improving question retrieval in
community question answering using world knowledge. In Proceedings of the 23rd International Joint
Conference on Artificial Intelligence (IJCAI’13).

Tom Chao Zhou, Michael R. Lyu, and Irwin King. 2012. A classification-based approach to question routing
in community question answering. In Proceedings of the 21st International Conference on World Wide
Web (WWW’12 Companion). 783–790.

Hengshu Zhu, Huanhuan Cao, Hui Xiong, Enhong Chen, and Jilei Tian. 2011. Towards expert finding
by leveraging relevant categories in authority ranking. In Proceedings of the 20th ACM International
Conference on Information and Knowledge Management (CIKM’11). 2221–2224.

Received April 2016; accepted May 2016

ACM Transactions on Information Systems, Vol. 35, No. 1, Article 4, Publication date: September 2016.


