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A. Social network data. Social connections within cities are
mapped through a large social network snapshot from Twitter
with precise geolocation information. This dataset provides
a remarkable context for studying spatial network patterns
inside cities, as individual-level social connections are rarely
available with precise geographic location at large scales.

Mutual follower relations on Twitter may not always rep-
resent actual friendship connections in real life. However,
multiple studies have used Twitter as a proxy for social inter-
actions to study urban segregation (1–4). Moreover, there is
recent evidence that the structure of online social networks
follows closely that of register-based social networks, which
represent formal connections of people such as family, work,
and school relationships (5), especially at local spatial scales,
such as a metropolitan area in our paper.

To enhance the quality of our Twitter data as much as
possible, we adopt a two-fold approach to exclude bots, com-
mercial, and political Twitter accounts from the sample. First,
we use the geographic information and timestamp of tweets
to exclude users whose consecutive tweets indicate unrealistic
mobility behavior. Specifically, we calculate the speed of users
between subsequent tweets based on the two locations and the
time difference, and exclude users who changed their position
faster than 800 km/h at least once, had at least 10 consecutive
tweets more than 2 km apart, and at least 5% of these tweets
had a speed greater than 120 km/h. These detailed criteria
were necessary to avoid the exclusion of high-speed users for
technical reasons, such as location hopping between cell phone
towers or users occasionally flying on airplanes with wifi access.
The same sample construction method was used previously in
(6) and (7). Second, we rely on the number of users’ outgo-
ing (following) and incoming (follower) ties to exclude those
who potentially do not use Twitter to maintain real social
connections, i.e., typically commercial or political profiles. We
exclude users who had an extreme number of connections, i.e.,
more than 5000 outgoing or more than 5000 incoming connec-
tions. Note that the data is from the time period 2012-2013,
when to have more than 2000 outgoing contacts, users had
to surpass a threshold of at least 2000 followers (see (8)). In
addition, only 1415 users (0.1% of the total) followed more
than 5000 other users at that time; in our work, we focus only
on mutual followership ties.

Fig. SI1 shows the network size in terms of nodes and edges
in all 50 metropolitan areas under study. Edges are based on
mutual followership. Besides presenting the raw numbers of
social network nodes and edges for each metropolitan area,
Table SI1 reports the bounding box coordinates we used for
our modeling.

Fig. SI2A illustrates that the distribution of the number of
users across cities closely follows the distribution of population
size from the census. In addition, we infer the socioeconomic
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Fig. SI1. Social network size. Number of nodes and edges in the Twitter social
network for the 50 largest metropolitan areas of the US.

status and demographics of users by linking their home location
to census tract-level data on income and racial composition
from the 2012 American Community Survey. While it is
common practice in working with online social networks or
mobility data to use estimated home locations for assigning
socio-economic characteristics to users (1, 9, 10), this inference
is not free from bias.

Fig. SI2B compares the users’ inferred income distribu-
tion with the income distribution across all census tracts in
metropolitan areas weighted by population. There is a near ex-
act overlap between the two distributions. Additionally to the
visual evidence, a permutation test with 1000 permutations
does not reject the hypothesis that the two income distribu-
tions derive from the same underlying distribution (observed
mean difference = 94 USD, significant at p > 0.05).

Figure SI2C compares the racial composition of our sample
with that of the general population, revealing a slight under-
representation of minority groups in our sample (Black: 14%
vs. 17% and Other: 2% vs. 7%) together with a slight over-
representation of white users (84% vs. 76%). Figure SI2D-E
breaks down the income distributions into the two largest
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Fig. SI2. Twitter data representativeness across various dimensions. A. Correlation between population and the number of Twitter users in the 50 largest US metropolitan
areas. B. Income distribution of users by income level in the census tracts of their home location and income distribution of the population of the 50 largest metropolitan areas.
The population income distribution is derived from the population-weighted census tract level income. C. Comparison of the racial composition of users in our sample and in
population. Users are assigned to racial groups based on the most populous racial group in the census tract of their home location. D. Comparison of the income distribution of
white users and white population. E. Comparison of the income distribution of Black users and Black population.

racial groups, revealing an underrepresentation of the wealth-
ier Black population in our sample. These discrepancies may
result from two factors: a potential racial bias in our Twitter
sample, and/or inaccuracies in estimating user race based on
census data, as we assign users to the majority racial group of
their home census tract.

Some of these representation disparities also manifest in
social connectivity patterns. Figure SI3A indicates that we
observe slightly more mutual followership ties within lowest
and highest income deciles. Figure SI3B illustrates the pattern
of connections by racial group, and shows a tendency for intra-
group connections in the two most populous groups (white
84%, Black 14% of all users). In previous studies, assortative
connection patterns were observed across both income and
racial groups in large US metropolitan areas (1, 3, 6, 11, 12).
In particular, some studies found that the level of homophily
observed in social ties tends to be even more pronounced for
the lower and upper ends of the income distribution, as we
find also in our data (13, 14).

B. Home Location Estimation. We start with the friend-of-
friend algorithm (15) to identify users’ home locations from
geocoded tweets, at a precision below census tract level on grid
cells of 100 × 100 m. This algorithm starts by identifying the
three densest spatial clusters of geocoded datapoints for each
user. Two geotagged tweets of the same user are considered
to belong to the same spatial cluster if they are at most 1 km
apart. To eliminate outliers, we iteratively filter out from each
cluster the datapoints that are most distant from the cluster
centroid, until all points are at most within a 3σ radius from
the centroid. After this trimming process, the three highest
cardinality clusters per user are retained.

We only keep users who have at least two of their three
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Fig. SI3. Social connections between income deciles and across racial groups.
A. Distribution of social ties across income deciles. Deciles are calculated separately
for each metropolitan area and users are assigned to deciles by their census tract
of home location. B. Connection patterns across racial groups. The matrix is row
normalized to illustrate the proportion of ties from one racial group (rows) to all other
groups (columns).

clusters falling within the same US metropolitan area which
both contain at least 50 tweets posted during weekdays over the
2-year period covered by the dataset. In line with established
practices (6, 16, 17), we label the cluster with the most tweets
between 8PM and 8AM as the user’s home location.

To gauge the robustness of the home location estimation, we
calculated the average distance of users’ tweets from their home
location, using the geolocated messages that have been labelled
as belonging to one cluster by the friend-of-friend algorithm
and the iterative 3σ trimming. Figure SI4 shows the share of
Twitter users with the average distance of tweets from their
home location in 100 m bins. Altogether, for slightly more
than 35% of users, this average distance is below 100 m, and
for an additionally almost 20%, between 100 and 200 m. Note
that the average might still be affected by outliers even after
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Fig. SI4. Robustness of the home location estimation. Distribution of the average
distance of tweets labelled as belonging to one cluster after the friend-of-friend
algorithm and the iterative 3σ trimming process. The vertical axis shows the share of
users from our sample per 100 m bins.

the trimming process, and that this gives little information on
the actual shape of the spatial distribution of tweets around
the home location.

C. Street network data. We download the street net-
work data from OpenStreetMap (OSM) (18) using the
OSMnx Python package v.1.2.1 (19). Specifically,
we use the osmnx.graph.graph_from_bbox function with
the parameters network_type = all_private, simplify
= False, retain_all = True, truncate_by_edge = True,
clean_periphery = False. For each city, we construct the
network comprising all the streets within the bounding box of
their Metropolitan Statistical Area (MSA) as defined by the
US Census Bureau (Table SI1).

All OSM street segments are labeled with the OSM
attribute highway, which identifies the type of street
that the segment represents. For each city, we ex-
tract the network of highways, freeways and major
transportation roads such as interstates, by considering
segments labeled as highway=motorway, highway=trunk,
highway=motorway_link, or highway=trunk_link.

We simplify the resulting graphs with the OSMnx function
simplification.simplify_graph to remove interstitial nodes.
The resulting street network for each city is a graph with
edges representing street segments and nodes representing the
intersections between them. For the qualitative studies of the 9
cities presented in the case study (Fig. 4 in the main text), we
use the QGIS software (20) to additionally simplify the graphs,
manually removing truncated street segments and merging
small consecutive highway segments between intersections into
larger segments.

D. Spatial null model detailed description. The Directed Con-
figuration Model (DCM) (21) is a network null model suited
for directed social graphs, and has been used extensively in
network science. To randomize the connections in an exist-
ing directed graph, DCM converts all incoming and outgoing
edges of a node into in- and out-stubs, namely ‘dangling’ edges
attached to the node. Then, each out-stub is matched with an
in-stub selected uniformly at random to form a directed edge.
This method generates a new random network characterized
by the same degree sequence as the original network. However,
when dealing with a network in which nodes occupy a position

in physical space, i.e., a spatial network, using a standard
configuration model is not sufficient, as it does not consider
the spatial constraints which can heavily influence connectivity
patterns. In particular, social connectivity on commonly mod-
eled by the gravity model (22, 23), an empirical relationship
stating that the volume wij of social connections between two
geographical areas i and j is proportional to the total number
of possible connections between them (calculated as the prod-
uct between the populations in the two areas Ni · Nj), and
inversely proportional to a power of their Euclidean distance
dγ

ij :

wij =
Nα

i Nβ
j

dγ
ij

[SI1]

The exponents of the gravity formula can be estimated from
real data by fitting it to a linear regression using the Ordinary
Least Squares (OLS) method:

log(wij) = α log(Ni) + β log(Nj) − γ log(dij) [SI2]

We verify empirically that the geographic arrangement of the
nodes and ties in our Twitter data is compatible with the
gravity model. Fig. SI5 shows the goodness of fit of a gravity
model that estimates the number of social connections between
two spatial cells in a regular grid overlaid on the city map.
Only cells connected by at least one social tie are considered.
The poorer fit at high spatial granularity is mainly given
by data sparsity. When considering small cells, the average
number of home locations within a cell is very low, which
causes the majority of cells to contribute a noisy signal to the
gravity model fit. To illustrate this point, we re-calculated the
gravity model fit by randomly sampling users (Fig. SI6). As
the sample size grows, the quality of the fit increases across
all spatial resolutions, but much more so for larger cell sizes.
Such variations in R2 growth correlate with the growth of the
average number of users per cell. For example, doubling the
user sample from 25% to 50% brings the number of users per
cell from 20 to 32 for the 15 km resolution, while it increases
the number users in 1 km cells only from 1.4 to 1.6 — an
insufficient statistic to reliably estimate the gravity effect of
social connections.

We further checked the robustness of our data’s fit with
the Gravity Law with additional model specifications to illus-
trate the robustness of gravity models in our intra-city case.
Following the approach of Silva and Tenreyro’s “Log of Grav-
ity” (24), we experiment with both OLS and PPML (Poisson
Pseudo-Maximum Likelihood), and by discarding (Tab. SI2)
or considering (Tab. SI3) pairs of cells with zero-flow. We re-
peated the same analysis using census tracts instead of square
cells (Tab. SI4). These regressions confirm that distance has
a significant negative relations with the number of social ties
between census tracts of metropolitan areas.

Our null model follows the algorithm of the configuration
model and extends it with the gravity model, such that both
degree sequences and spatial connectivity patterns are pre-
served. First, all ties in the network are turned into in- and
out-stubs. Then, an out-stub i is selected at random. Let
j be the stub that was originally connected to i, and dij be
the Euclidean distance between them. The set of candidate
in-stubs for the random rewiring of i is now restricted to those
that are approximately at distance dij from i, namely the set
of stubs S = {k|dij − ϵ ≤ dik ≤ dij + ϵ}. We set empirically
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Bounding box City center

Cbsacode City State #Nodes #Edges West South East North Lat Lon

12060 Atlanta GA 39006 147378 -85.387 32.845 -83.269 34.618 33.757 -84.388
12420 Austin TX 13473 38994 -98.298 29.631 -97.024 30.906 30.270 -97.743
12580 Baltimore MD 16453 51322 -77.312 38.711 -75.748 39.722 39.291 -76.614
13820 Birmingham AL 6402 27264 -87.422 32.660 -86.044 34.260 33.520 -86.810
14460 Boston MA 28604 75679 -71.899 41.566 -70.323 43.573 42.361 -71.056
15380 Buffalo NY 9046 27104 -79.312 42.438 -78.460 43.635 42.882 -78.875
16740 Charlotte NC 14367 39336 -81.538 34.458 -79.848 36.059 35.226 -80.843
16980 Chicago IL 52964 172016 -88.942 40.737 -86.929 42.670 41.881 -87.627
17140 Cincinnati OH 12358 43134 -85.299 38.473 -83.673 39.729 39.101 -84.513
17460 Cleveland OH 15367 64952 -82.348 40.988 -81.002 42.252 41.498 -81.695
18140 Columbus OH 11918 30576 -83.653 39.362 -82.024 40.713 39.961 -82.997
19100 Dallas TX 44015 136458 -98.067 32.052 -95.859 33.434 32.788 -96.800
19740 Denver CO 9051 15933 -106.210 38.693 -103.706 40.044 39.752 -104.999
19820 Detroit MI 30031 118146 -84.158 42.028 -82.334 43.327 42.318 -83.038
25540 Hartford CT 6364 13628 -73.030 41.178 -72.099 42.039 41.767 -72.673
26420 Houston TX 36978 107845 -96.622 28.765 -94.353 30.630 29.774 -95.361
26900 Indianapolis IN 12121 34216 -87.015 39.048 -85.576 40.380 39.768 -86.158
27260 Jacksonville FL 7272 14124 -82.460 29.622 -81.151 30.830 30.327 -81.656
28140 Kansas City MO 10715 28848 -95.188 38.026 -93.477 39.789 39.089 -94.588
29820 Las Vegas NV 12945 26280 -115.897 35.002 -114.043 36.854 36.167 -115.148
31080 Los Angeles CA 75385 154524 -118.952 32.750 -117.413 34.823 34.059 -118.253
31140 Louisville KY 8451 31520 -86.330 37.806 -84.867 38.784 38.257 -85.760
32820 Memphis TN 7681 21844 -90.589 34.424 -89.184 35.652 35.148 -90.051
33100 Miami FL 31201 70629 -80.886 25.137 -79.974 26.971 25.775 -80.193
33340 Milwaukee WI 9736 34310 -88.542 42.842 -87.069 43.544 43.038 -87.918
33460 Minneapolis MN 18333 57216 -94.262 44.196 -92.135 46.247 44.983 -93.271
34980 Nashville TN 11766 33716 -87.567 35.408 -85.779 36.652 36.161 -86.779
35380 New Orleans LA 8127 14178 -90.964 28.855 -88.758 30.712 29.952 -90.074
35620 New York NY 108292 313702 -75.359 39.475 -71.777 41.602 40.767 -73.979
36420 Oklahoma City OK 7638 18882 -98.313 34.681 -96.619 36.165 35.472 -97.498
36740 Orlando FL 14649 23406 -81.958 27.642 -80.861 29.277 28.543 -81.380
37980 Philadelphia PA 41170 124130 -76.233 39.290 -74.39 40.609 39.951 -75.156
38060 Phoenix AZ 18961 29693 -113.335 32.501 -110.448 34.048 33.449 -112.071
38300 Pittsburgh PA 14827 48812 -80.519 39.721 -78.974 41.173 40.444 -79.996
38900 Portland OR 10032 18974 -123.786 44.886 -121.514 46.389 45.519 -122.674
39300 Providence RI 9845 21788 -71.907 41.096 -70.752 42.096 41.824 -71.413
39580 Raleigh NC 7414 18822 -78.995 35.255 -78.007 36.266 35.774 -78.640
40060 Richmond VA 7636 24652 -78.241 36.708 -76.645 38.008 37.540 -77.438
40140 Riverside CA 21543 36396 -117.803 33.426 -114.131 35.809 33.983 -117.373
40900 Sacramento CA 8708 12620 -122.422 38.018 -119.877 39.316 38.571 -121.480
41180 Saint Louis MO 14772 49526 -91.419 38.003 -89.138 39.523 38.628 -90.183
41620 Salt Lake City UT 5336 11250 -114.047 39.904 -111.553 41.077 40.758 -111.895
41700 San Antonio TX 14943 43022 -99.603 28.613 -97.631 30.139 29.424 -98.491
41740 San Diego CA 14222 19166 -117.611 32.529 -116.081 33.505 32.725 -117.157
41860 San Francisco CA 20091 67850 -123.174 37.054 -121.469 38.321 37.784 -122.437
41940 San Jose CA 6267 6194 -122.203 36.197 -120.597 37.485 37.331 -121.886
42660 Seattle WA 17333 41986 -122.853 46.728 -120.907 48.299 47.605 -122.335
45300 Tampa FL 11974 19120 -82.909 27.571 -82.054 28.695 27.951 -82.454
47260 Virginia Beach VA 10405 29284 -77.502 36.029 -75.709 37.603 36.842 -76.134
47900 Washington DC 36271 100740 -78.453 37.991 -76.322 39.720 38.901 -77.039

Table SI1. Summary of the 50 cities with their bounding box coordinates and size of the Twitter social network (nodes and edges).
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Fig. SI5. Gravity model of Twitter data. R2 goodness of fit of a linear regression to
estimate the number of social connections between two areas from their geographical
distance and their respective number of Twitter users’ home locations (Equation SI2).
A good fit indicates that the geographical patterns of the social connections are
compatible with a gravity law. Each point on the plot represents the result of a
regression ran on a single city and considering the tiles of a regular grid with a fixed
granularity. The black squares represent the average of all the realizations for the
given grid granularity. The fit stabilizes at around R2 = 0.5 when considering tiles of
10 km of side.

ϵ = 50m. The matching in-stub k is randomly selected among
all candidates with probability that is proportional to their
local density Nk, namely the the number of nodes in the area
surrounding the node with that stub. Such an area is empiri-
cally defined as a circle of radius 500m centered around the
candidate node. This selection based on local density reflects
the gravity law in Equation SI1. From that Equation, our
algorithm can disregard both Ni, because the out-node i is
fixed, and dij because all candidate nodes are selected to be
at approximately distance dij from i. Last, the re-wired stubs
are removed from the data. The algorithm iterates over the
remaining in-stubs until none are left.

As long as the set of candidate in-stubs S is not empty
at any iteration of the algorithm (i.e., at least one candidate
in-stub is found at the desired distance), the rewired social net-
work produced by this algorithm is a null model that exhibits
strong properties; not only it reproduces the degree sequence
and spatial connectivity patterns of the original network, but
it also preserves the length distribution of social ties departing
from each individual node. However, this last property is
not always strictly guaranteed, since the iterative nature of
the algorithm may lead to the exhaustion of the set S if all
suitable in-stubs for the current out-stub have been used in
prior iterations. When such an event occurs, the algorithm in-
crementally increases the buffer size ϵ until S contains at least
one element. In the extreme case where ϵ → ∞, all available
stubs are considered with selection probability proportional
to their local density, reflecting a global gravity law.

Our empirical observations indicate that the difference be-
tween the length dij of an original social tie and the length
dik of its randomly rewired counterpart is minimal. The
distributions of lengths in the real and null models are indis-
tinguishable according to a paired Kolmogorov-Smirnov test
(p = 0.0). The median error is 26 m, and it is at most 100 m
for 92% of the ties. In relative terms, 90% of the null ties have
a length within a 2% error compared to their corresponding
real ties. The distributions of tie lengths and null model errors
are provided in Fig. SI7. Notably, the length distribution in
Fig. SI7A, where most ties are beneath the length of 25-30 km,
is in line with previous findings from empirical studies on
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Fig. SI6. Gravity model of sampled Twitter data. A. R2 goodness of fit of a linear
regression to estimate the number of social connections between two areas from their
geographical distance and their respective number of Twitter users’ home locations.
Each point represents the average fit of the 50 cities. Different curves represent the fit
obtained by random subsampling the users within each city. B. The number of users
per cell, averaged across the 50 cities, for different subsamples.
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Fig. SI7. Null model error. A. Probability density function of the geographical length
of Twitter social ties in the real data and in the null model. The two distributions
are indistinguishable according to a paired Kolmogorov-Smirnov test (p = 0.0).
B. Distribution of the absolute error on the geographical length of social ties introduced
by the null model. The error is calculated as the absolute difference between the
length of a real tie and the length of the corresponding tie in the null model.

social tie length (25) and face-to-face interaction frequencies
(26).

E. Statistical significance of Barrier Scores. Figure SI8 shows
an heatmap displaying Barrier Scores with non-significant
values crossed-out (p > 0.01). Multiple instances of negative
Barrier Scores are non-significant, especially at short distances,
confirming our initial intuition.

F. Barrier Scores for longer distances. The Barrier Scores for
distances up to 20 km are shown in Figure SI9. In most cities,
the scores approach zero at distances longer than 10 km. The
confidence intervals of the mean shows high uncertainty in
a few cases at very short distances, due to the scarcity of
short-range social ties in some cities. Notably, the uncertainty
is highest for those cities that have negative barrier scores
at short distances, suggesting that those negative values are
likely artifacts of data scarcity.

G. Negative Barrier Scores at short distances. Significant neg-
ative scores are rare across all distances and cities, and espe-
cially, most occurrences of negative Barrier Scores are non-
significant. To develop a fine-grained understanding for nega-
tive values of the Barrier Score at short distances in a local
context, we focus on the city of Jacksonville, which we identify
as the most significant outlier. We visualize the Barrier Scores
for shorter-distance ties on aggregated highway segments (see
Fig. SI10). This closer look shows that highway segments
with negative Barrier scores correspond to bridges that cross
a natural barrier (St. John’s river). Notably, all bridges con-
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Estimator OLS OLS OLS OLS PPML PPML PPML PPML

Dependent variable log(tij) log(tij) log(tij) log(tij) tij > 0 tij > 0 tij > 0 tij > 0

Grid cell size 1 km 5 km 10 km 20 km 1 km 5 km 10 km 20 km

(1) (2) (3) (4) (5) (6) (7) (8)

Distance (log) −0.056∗∗∗ −0.413∗∗∗ −0.775∗∗∗ −1.189∗∗∗ −0.242∗∗∗ −1.882∗∗∗ −3.089∗∗∗ −3.886∗∗∗

(0.008) (0.023) (0.029) (0.035) (0.001) (0.004) (0.008) (0.016)

Populationi (log) 0.059∗∗∗ 0.191∗∗∗ 0.309∗∗∗ 0.453∗∗∗ 0.301∗∗∗ 1.144∗∗∗ 1.526∗∗∗ 1.673∗∗∗

(0.008) (0.007) (0.009) (0.013) (0.003) (0.003) (0.005) (0.008)

Populationj (log) 0.057∗∗∗ 0.183∗∗∗ 0.306∗∗∗ 0.446∗∗∗ 0.287∗∗∗ 1.080∗∗∗ 1.453∗∗∗ 1.684∗∗∗

(0.005) (0.006) (0.008) (0.011) (0.001) (0.003) (0.005) (0.007)

Metro fixed effect Yes Yes Yes Yes Yes Yes Yes Yes
Observations 1,128,349 420,630 156,908 41,948 1,128,349 420,630 156,908 41,948
R2 0.148 0.347 0.506 0.650 - - - -

Table SI2. OLS and PPML regressions illustrate the effectiveness of gravity models in predicting social ties. OLS stands for Ordinary Least
Squares, while PPML stands for Poisson pseudo-maximum-likelihood. The models are fit on the data from the 50 largest metropolitan areas, and
are tested at different grid cell sizes. The sample of each model consists of all grid cell pairs that are connected by at least one social tie. All model
specifications indicate that social connections are more likely between geographically close locations. Standard errors are clustered at the metropolitan
area level. ***: p<0.01, **: p<0.05, *: p<0.1.

Estimator OLS OLS OLS PPML PPML PPML

Dependent variable log(1 + tij) log(1 + tij) log(1 + tij) tij tij tij

Grid cell size 5 km 10 km 20 km 5 km 10 km 20 km
(1) (2) (3) (4) (5) (6)

Distance (log) −0.082∗∗∗ −0.201∗∗∗ −0.407∗∗∗ −2.916∗∗∗ −3.725∗∗∗ −4.627∗∗∗

(0.006) (0.010) (0.013) (0.003) (0.006) (0.014)

Populationi (log) 0.031∗∗∗ 0.065∗∗∗ 0.120∗∗∗ 1.696∗∗∗ 1.704∗∗∗ 1.687∗∗∗

(0.001) (0.002) (0.005) (0.002) (0.003) (0.007)

Populationj (log) 0.030∗∗∗ 0.065∗∗∗ 0.117∗∗∗ 1.646∗∗∗ 1.648∗∗∗ 1.701∗∗∗

(0.001) (0.002) (0.004) (0.002) (0.003) (0.007)

Metro fixed effect Yes Yes Yes Yes Yes Yes
Observations 8,642,246 1,352,109 192,858 8,642,246 1,352,109 192,858
R2 0.133 0.211 0.262 - - -

Table SI3. OLS and PPML regressions considering all grid cell pairs to illustrate the effectiveness of gravity models in predicting social ties.
OLS stands for Ordinary Least Squares, while PPML stands for Poisson pseudo-maximum-likelihood. The models are fit on the data from the 50 largest
metropolitan areas, and are tested at different grid cell sizes. The sample of each model includes every grid cell combination, even without any observed
social ties. All model specifications indicate that social connections are more likely between geographically close locations. Standard errors are clustered
at the metropolitan area level. ***: p<0.01, **: p<0.05, *: p<0.1.

necting the two river banks are part of the highway network;
the relevance of bridges as connecting elements (“bottlenecks”)
of a street network is thus further exacerbated by the fact
that there are no alternative (e.g., pedestrian) crossings. This
finding provides a plausible explanation for the phenomenon.

H. Barrier Scores remain positive after considering other
physical barriers. To check for physical barriers other than
highways that could confound our estimation of the Barrier
Scores, we perform two additional pieces of analysis that ac-
count for barrier types other than highways. We decided which
barrier types to include based on previous studies placing a
strong emphasis on transportation infrastructure playing a
crucial role for urban morphology, in particular with respect to
the physical barriers that it introduces in the urban space (27).
Previous literature concurs on considering transportation in-
frastructure as the union of major roads for motorized trans-

port (highways); railways; and waterways (all water features
such as rivers, canals and lakes) (28–30). These categories of
urban features are commonly used in recent studies that ex-
plore societal impacts of transportation infrastructure (31–33).
Therefore, in addition to highways, we consider railways and
waterways.

We base our experiments on manually curated Open-
StreetMap (OSM) (18) data for railways and waterways within
each of the 50 metropolitan areas. The manual curation was
needed due to data quality, tag diversity in crowd-sourced
OSM data, and interestingly, also because a substantial num-
ber of features marked as “railways” in the data have been
converted to hiking trails (see e.g., the initiatives by the Rails
To Trails Conservancy (34)).

First, we re-calculated the Barrier Scores by limiting the
analysis to urban areas that do not contain any other major
physical barriers than highways. To do that, we consider only
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Estimator OLS OLS OLS PPML PPML

Dependent variable log(1 + tij) log(tij > 0) log(1 + tij) tij tij > 0

(1) (2) (3) (4) (5)

Distance (log) −0.098∗∗∗ −0.163∗∗∗ −0.026∗∗∗ −1.511∗∗∗ −0.710∗∗∗

(0.012) (0.014) (0.008) (0.004) (0.003)

Populationi (log) 0.017∗∗∗ 0.031∗∗∗ 0.005∗∗ 0.402∗∗∗ 0.178∗∗∗

(0.005) (0.008) (0.002) (0.007) (0.005)

Populationj (log) 0.004 −0.001 0.008∗∗∗ 0.015∗∗∗ −0.041∗∗∗

(0.005) (0.009) (0.003) (0.004) (0.003)

Metro fixed effect Yes Yes Yes Yes Yes
Observations 2,669,688 672,846 26,998,504 2,669,688 672,846
R2 0.040 0.091 0.042 - -

Table SI4. OLS and PPML regressions illustrate the effectiveness of gravity models in predicting social ties between census tracts. OLS stands
for Ordinary Least Squares, while PPML stands for Poisson pseudo-maximum-likelihood. Models 1 and 4 are the same as our main models, taking into
account the pairs of census tracts with no (zero) social ties in a selected sample. Model 3 includes census tract pairs with zero observed ties to account
for all possible pairs, and Models 2 and 5 are restricted to pairs with more than zero ties. All model specifications indicate that social connections are
more likely between geographically close locations. Standard errors are clustered at the metropolitan area level. ***: p<0.01, **: p<0.05, *: p<0.1.

the subset of social ties that are fully contained within regions
that are not crossed by any railway or waterway, as illustrated
in Figure SI11 for the city of Austin. The resulting Barrier
Scores are shown in Fig. SI12. Note that in this method, by
focusing on smaller regions rather than the whole metropolitan
area, long-distance ties are by definition underrepresented.
Nevertheless, the Barrier Scores obtained for short and medium
distances confirm the same trends observed when using the
full dataset, especially at short distances.

Second, we propose an alternative approach to adjust our
null model for the presence of physical barriers when com-
puting the Barrier Score. Unlike the previous solution, this
method considers the whole metropolitan area, without par-
titioning it into smaller sections. Specifically, we modify the
null model to discount the contribution of social ties for which
the role of highway as barrier is potentially confounded by
other physical barriers. The rationale behind this method is
explained in Figure SI13. Essentially, we reduce the Barrier
Score contribution from “confounded” null ties that intersect
both highways and other barriers. We emphasize the very
conservative nature of this adjustment, because of two rea-
sons. Firstly, this adjustment assumes that the barrier effect
of highways on social ties is always nullified when null ties
intersecting a highway also intersect other types of barriers.
Secondly, the contribution of those type of ties is discarded
irrespective of the proximity between the highway and the
other physical barrier they intersect. We find that even after
applying this new, more stringent null model, Barrier Scores
remain positive up to a distance of 8 km (Fig. SI14).

I. Sensitivity analysis of city-level regression. The regression
results presented in Fig. 3 (main text) refer to a model which
predicts a Barrier Score considering social ties with lengths
up to 10 km (BD, with D = 10km). Fig. SI15 shows the
regression coefficients and adjusted R2 for all values of D
ranging from 1km to 50 km. The regression results hold in
the range between 5 km and 30 km.

J. Alternative regression models at the census tract pair level.
To test the robustness of the tract-level regression results, we
first experiment with different ways of selecting the sample

of tract pairs to include in the regression, as summarized in
Table SI5. The first three columns in Table SI6 compare
different sampling criteria.

There are two common methodologies for selecting pairs of
locations when constructing a gravity model (24). The first
method involves selecting only those pairs of locations that are
connected by at least one social tie. Model 2 in Tab. SI6 ad-
heres to this criterion by including pairs linked by a minimum
of one real social tie (672,846 observations). Consistent with
our expectations, this model yields a negative and statistically
significant coefficient for the number of highways crossed. The
second approach involves the selection of all possible loca-
tion combinations, irrespective of connections between them.
Model 3 implements this strategy, thus obtaining 26,998,504
possible tract pairs. This is the only model for which we
obtain a positive coefficient for the number of highways. This
sign flip is mostly explained by sparsity. About 98% of the
nearly 27 million possible tract pairs considered have no social
ties connecting them. Given this heavy skew in the data,
the OLS model infers that tracts pairs with non-zero number
of ties between them are predominantly located within the
densely populated urban cores of metropolitan areas, where
Twitter user density is also higher. For example, the densely
populated urban areas, as defined by the US Census, occupy
20% of the total metropolitan areas and contain 80% of our
Twitter population. They also contain 52% of the highway
infrastructure, with a highway density that is 8.4 times higher
than suburban areas. As a result, urban tracts with dense
social connections are much more commonly intersected by
highways than the peripheral tracts with sparse Twitter pen-
etration, resulting in a positive regression coefficient for the
number of highways. Ultimately, this finding points to the
fact that, while our experiments offer robust evidence on the
barrier effect in urban areas characterized by a high density
of ties and highways, they do not provide sufficient evidence
for such an effect existing in suburban or rural areas.

To overcome the issue of data sparsity and strike a good
balance between the two sampling methods mentioned above,
we leverage the information from our null models. We do so
by constructing a sample of census tract pairs connected by
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Fig. SI8. Statistical testing reveals most negative Barrier Scores are non-
significant. Heatmap of all Barrier Scores B(d) grouped into 0.5 km bins of social
tie distance. Values marked with an × are non-significant according to T-tests
(p > 0.01).

at least one real social tie or one null tie created in any of
the random realizations of our null model. This approach
effectively balances the two sampling strategies previously
described, considering the 2,669,688 tract pairs that are either
connected in the observed Twitter social network (672,846
observations), or that could plausibly be connected based
on proximity and population (1,996,842 observations). This
is a natural choice of sampling, as it includes all pairs of
tracts that can be potentially connected according to our null
model, while excluding pairs of locations that are too sparsely
populated and far apart to exhibit even a minimal level of
social connectivity. Model 1 in Tab. SI6 implements this
strategy and is our preferred OLS regression presented in the
main text. Its coefficients are again in line with expectations.

To further illustrate the robustness of our results, in Ta-
ble SI6 we report two alternative models to our log-linear, OLS-
based specifications using PPML (Poisson pseudo-maximum-
likelihood) regressions. PPMLs expect a Poisson distribution
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Fig. SI9. Barrier scores up to 20 km of distance. The shaded gray areas represent
the 95% confidence intervals.

and count data for the dependent variable, so they fit our data
better. Model 4 based on our selected sample and Model 5
based on the sample of all observed connections show identical
results to OLS models in terms of sign an significance for all
of our variables. Due to computational demand, it was not
possible to fit PPML models to observations from all possible
census tract pairs, but we would expect results similar to the
OLS setting.
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Fig. SI10. Bridges explain negative Barrier Scores in Jacksonville. Highway
Barrier Scores for the highways in central Jacksonville. Red represents positive
scores, blue represents negative scores. The bridges connecting downtown to the
south bank facilitate the connection between two densely populated areas, resulting
in negative Barrier Scores. The Acosta Bridge and the Main Street Bridge highlighted
in the map are those that contribute the most to the negative Barrier Scores B(d) for
values of d below 1.5 km.

Austin

Railway
River

Fig. SI11. Polygonization of the metropolitan area of Austin based on railways
and waterways. Each polygon is delimited by railways, waterways, or the metropolitan
area boundaries. Polygons containing an insufficient number of users are discarded.
The remaining ones (colored and marked with a dot) are retained, and the Barrier
Score is recalculated by considering only social ties that are fully within the polygons.
The purpose of the polygonization is to measure Barrier Scores in geographical areas
that are not confounded by other major physical barriers.

No null model ties Null model ties Total

No social ties 24,328,816 1,996,842 26,325,658

Observed social ties 159,426 513,420 672,846

Table SI5. Sample composition behind our main models. Our null
model is leveraged to construct the sample for our census tract pair level
regressions. Light grey colors indicate the selected sample behind our
preferred specifications.
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Fig. SI12. Barrier Scores in urban areas with no railways nor waterways.
Heatmap of all Barrier Scores B(d) grouped into 0.5 km bins of social tie distance.
The estimated scores correspond to Barrier Score estimation that limits the analysis
to social ties fully contained in areas that are not crossed by any railway or waterway.
Non-significant values are not displayed.

Our controlled correlations in Table 1 (main text) and all
the above models are pooled regression models with fixed
effects at the metropolitan area level. This means that census
tract pair level observations from different cities are com-
bined, and a dummy control variable is added to account for
metropolitan area specificities. We also compute Model 5 from
Table 1 (main text) for each of the 50 metropolitan areas sep-
arately, and report the coefficients for the number of highways
crossed in Fig. SI16. The results are in general consistent with
the aggregated findings, with only 4 cities exhibiting positive
and significant coefficients for that variable.

Lastly, we check the robustness of our regression results by
changing its dependent variable. First, we fit the regression
on the Barrier Score between two tracts as the dependent
variable, simply defined as the ratio between the number of
real and null ties connecting them. In this model, the sign and
significance of the regression model’s coefficients is in line with
the other models (Table SI7). Second, as a sanity check, we
fit a regression model on the number of null ties, and obtained
non-significant coefficients for the number of highways crossed,
which is expected since the null model is oblivious to highways
(Table SI8).

K. Controls and re-weighting in regression models to account
for race biases.

To account for the biases in the representation of different
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Estimator OLS OLS OLS PPML PPML

Dependent variable log(1 + tij) log(tij > 0) log(1 + tij) tij tij > 0

(1) (2) (3) (4) (5)

Nr highways crossed (log) −0.013∗∗∗ −0.038∗∗∗ 0.013∗∗∗ −0.326∗∗∗ −0.182∗∗∗

(0.003) (0.006) (0.002) (0.007) (0.005)

Nr. of railways and waterways crossed (log) −0.013∗∗∗ −0.009∗ −0.004∗∗∗ −0.108∗∗∗ −0.011∗∗∗

(0.003) (0.005) (0.001) (0.004) (0.003)

Income abs difference −0.018∗∗∗ −0.006∗∗ −0.002∗ −0.154∗∗∗ −0.001
(0.001) (0.003) (0.001) (0.003) (0.002)

Racial similarity 0.023∗∗∗ 0.016∗∗∗ 0.003∗∗∗ 0.276∗∗∗ 0.055∗∗∗

(0.003) (0.004) (0.001) (0.004) (0.003)

Distance (log) −0.081∗∗∗ −0.133∗∗∗ −0.033∗∗∗ −1.243∗∗∗ −0.607∗∗∗

(0.015) (0.015) (0.009) (0.006) (0.005)

Population (product log) 0.019∗∗ 0.035∗∗∗ 0.009∗∗∗ 0.350∗∗∗ 0.157∗∗∗

(0.008) (0.013) (0.003) (0.005) (0.004)

Metro fixed effect Yes Yes Yes Yes Yes
Observations 2,669,688 672,846 26,998,504 2,669,688 672,846
R2 0.051 0.098 0.044 - -

Table SI6. Alternative regressions at the level of the census tract pairs to support our main models. OLS stands for Ordinary Least Squares, while
PPML stands for Poisson pseudo-maximum-likelihood. All independent variables are standardized in the same way for all models. Models 1 and 4 take
into account the pairs of census tracts with no (zero) social ties but at least one null model tie connecting them. Model 3 includes all possible pairs of
census tracts, and models 2 and 5 are restricted to pairs connected by at least one real tie. Standard errors are clustered at the metropolitan area level.
***: p<0.01, **: p<0.05, *: p<0.1.

Ratio of social ties to null model ties

(1) (2) (3) (4) (5)

Nr. of highways crossed (log) −0.235∗∗∗ −0.178∗∗∗

(0.031) (0.021)
Nr. of rail- and waterways crossed (log) −0.090∗∗∗ −0.040

(0.005) (0.026)
Income abs. difference −0.139∗∗∗ −0.125∗∗∗

(0.013) (0.011)
Racial similarity 0.195∗∗∗ 0.177∗∗∗

(0.020) (0.018)
Distance (log) −0.358∗∗∗ −0.432∗∗∗ −0.487∗∗∗ −0.500∗∗∗ −0.347∗∗∗

(0.030) (0.033) (0.022) (0.020) (0.034)
User population (product log) 0.098∗∗∗ 0.099∗∗∗ 0.091∗∗∗ 0.077∗∗∗ 0.041∗∗

(0.018) (0.019) (0.018) (0.018) (0.017)

Metro fixed effect Yes Yes Yes Yes Yes
Observations 2,669,688 2,669,688 2,669,688 2,669,688 2,669,688
R2 0.009 0.010 0.010 0.011 0.012

Table SI7. Ordinary least squares regression models on the ratio of social ties and null model based ties between pairs of census tracts
including spatial and socio-demographic features. All the models include the metropolitan area as fixed effect. Crucially, the number of social
ties between two tracts decreases with the number of highways that are crossed, after controlling for distance, user population, and socio-economic
differences between the tracts. All variables indicated with (log) are transformed using log10(1 + xij) to consider zero values. Standard errors are
clustered at the metropolitan area level. ***: p<0.01, **: p<0.05, *: p<0.1.

socioeconomic strata in our data (Fig. SI2), we fit alternative
regression models to those presented in Table 1 of the main
text. These refined models incorporate both the income level
of each tract and a new measure of racial similarity, defined
as the cosine similarity of tract-level vectors that represent
the population share of white, Black, and other racial groups.
Compared to the regression model in Table 1 that uses solely a
dummy variable for the majority racial group, these variables
more accurately capture the nuanced relationship between
social connectivity and socioeconomic factors. The resulting

coefficients suggest that the implementation of these enhanced
measures of socioeconomic similarity does not impact our
results, as detailed in Table SI9 – the coefficient of the highways
crosses remains negative and significant.

Third, while we cannot identify the income and race of indi-
vidual users beyond their likely classification based on census
tract of residence, we introduce a new analysis to test the ro-
bustness of our findings through stochastic racial assignment, a
method employed in various studies in the literature on urban
segregation (35, 36). This approach randomly assigns users to
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Nr social ties (log) Nr null model ties (log)

(1) (2)

Nr highways crossed (log) −0.013∗∗∗ −0.003
(0.003) (0.004)

Nr railways and waterways crossed (log) −0.013∗∗∗ 0.005∗∗

(0.004) (0.002)
Income abs. difference −0.018∗∗∗ −0.004∗

(0.001) (0.002)
Racial similarity 0.023∗∗∗ 0.004∗

(0.003) (0.002)
Distance (log) −0.081∗∗∗ −0.105∗∗∗

(0.015) (0.010)
User population (product log) 0.019∗∗ 0.029∗∗∗

(0.0008) (0.009)

Metro fixed effect Yes Yes
Observations 2,669,688 2,669,688
R2 0.051 0.115

Table SI8. Ordinary least squares regressions on the number of null model based connections between pairs of census tracts. All the models
include the metropolitan area as fixed effect. Model (1) is the same as our final model in the main text, considering real social connections as a dependent
variable and is used for comparative purposes. Model (2) is based on the same sample as Model (1). All variables indicated with (log) are transformed
using log10(1 + xij) to consider zero values. Standard errors are clustered at the metropolitan area level. ***: p<0.01, **: p<0.05, *: p<0.1.
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Fig. SI13. Null model discounting the confounding effect from other physical
barriers. Let A be a user located close to a highway that was built alongside a river.
A is connected through a social tie with user B, who is located on the same side of
the highway as A. Suppose that the null model rewires the social tie (A, B) to form
a new null tie (A, C), where user C is located on the other side of the highway and
the river. In this illustrative example, the number of highways crossed in the null model
(cnull

E ) is higher than the number of crosses in the real model (cE ), thus contributing
towards a positive Barrier Score. Given the null model assumptions, the null tie is
interpreted as a connection that would have occurred in an hypothetical scenario
where connectivity is not influenced by highways. However, since the null tie crosses
both an highway and a river, it is uncertain whether the absence of the tie (A, C) in
the real data is due to the highway or the river. To account for this uncertainty, we
discard the effect of the tie (A, C) on the Barrier Score by simply reverting the null
tie back to its original real tie (A, B), so that the number of highways crossed in the
two models is the same (cnull

E = cE ). This revised null model applies this correction
on every instance of null tie that crosses at least one highway and one barrier of a
different type (waterway or railway).

racial groups according to the actual demographic distribution
of the population in the given tract. By doing so, we ensure
that the racial composition among users reflects that of the
population. This allows us to use racial similarity measures
derived from these random assignments to calculate the pro-
portion of same-race social connections between tracts. This
exercise of randomized assignment was conducted 20 times for
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Fig. SI14. Average Barrier Score after discounting for other barriers The Barrier
Score vs. distance calculated with the regular null model and with an alternative
null model that discounts the contributions to the Score given by ties crossing both
highways and other barriers (waterways or railways), as illustrated in Figure SI13.
Despite the discounting, the Barrier Score is still positive up to 8 km of distance.

robustness, with Table SI10 presenting an example regression
from this procedure, and Figure SI17 illustrating the coeffi-
cients across the 20 regressions. The coefficient for the share
of same-race ties was found to be positive and significant in all
models (p < 0.05), while our primary variable of interest, the
number of highways crossed, consistently remained negative
and significant across all models.

Finally, we implement a reweighting procedure to address
income and racial biases. Initially, we categorize census tracts
by their majority race (white, Black, or other) and income
deciles (1 to 10), and count the number of users and the
total population within these resulting 30 categories. We
then input these counts into the Iterative Proportional Fit-
ting (IPF) method (37), which iteratively calculates category
weights while preserving the marginal population distributions
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Number of social ties (log)

(1) (2) (3)

Nr. of highways crossed (log) −0.012∗∗∗

(0.003)
Nr. of railways and waterways crossed (log) −0.014∗∗∗

(0.004)
Racial similarity (cosine similarity) 0.057∗∗∗ 0.064∗∗∗

(0.004) (0.004)
Income tract1 (log) −0.002 −0.015∗∗∗

(0.005) (0.005)
Income tract2 (log) −0.016∗∗∗ −0.027∗∗∗

(0.003) (0.003)
Income abs. difference −0.018∗∗∗ −0.011∗∗∗

(0.003) (0.001)
Distance (log) −0.099∗∗∗ −0.098∗∗∗ −0.080∗∗∗

(0.013) (0.013) (0.015)
User population (product log) 0.034∗∗∗ 0.017∗∗ 0.027∗∗∗

(0.009) (0.008) (0.009)

Metro fixed effect Yes Yes Yes
Observations 2,669,688 2,669,688 2,669,688
R2 0.046 0.049 0.056

Table SI9. Ordinary least squares regression models on the number of social connections with alternative variables on the socio-economic
similarity of census tracts. All variables indicated with (log) are transformed using log10(1 + xij) to consider zero values. Standard errors are clustered
at the metropolitan area level. ***: p<0.01, **: p<0.05, *: p<0.1.
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Fig. SI15. Sensitivity analysis of city-level regression. Value of β coefficients and
R2

adj for OLS regression models aimed at predicting the Barrier Score calculated
considering only social ties of length up to d. Transparent bullets indicate non-
significant coefficients.

along the two selected variables – majority race and income
decile. The resulting weights quantify the over- or under-
representation of specific socioeconomic categories within our
data (38). We assign these weights to the tracts based on their
income decile and majority race. We adjust the number of
social ties between each pair of census tracts by multiplying
these ties by the weights associated with the respective tracts,
assuming any potential bias in the observed ties is rooted in
the representation biases of the underlying population groups.
We use this reweighted connection count as an adjusted de-
pendent variable, and we fit a new regression model whose
the coefficients of which are presented in Table SI11. Despite
accounting for potential under- and over-representation, the
influence of highways on our results remained unchanged.

L. Decreasing Barrier Score with distance. Fig. 2 (main text)
shows that the Barrier Score tends to decrease with distance.
This suggests that the role of highways as barriers could change

if more distant locations are considered. To quantify this
decreasing barrier effect, we rely on our census tract level
regression setting (see Table 1 in main text). First, we include
the interaction effect of distance and number of highways
crossed to our preferred regression specification. Interactions
allow us to test conditional effects of one variable (in our case,
distance) on the contribution of another variable (in our case,
highways crossed) to the dependent variable (number of social
ties). Model 1 in Table SI12 matches our final model from
the main text, while Model 2 contains the interaction term.
The interaction of distance and number of highways crossed is
positive and significant, while the sign and significance of all
other variables remain unchanged. Models 3 and 4 show the
same results, but these models are based only on census tract
pairs with observed social ties (see Tab. SI6).

Second, we leverage this interaction term to visualize the
changes in the coefficient of number of highways crossed in
a two-way interaction term, conditional on the value of the
other included variable, i.e. distance of census tracts. In
other words, here we plot the estimated effect of the number
of highways crossed on the number of social connections at
different distances. Fig. SI18 shows that highways separating
tracts within less than 20 km are associated with lower levels of
social connectivity, whereas they are associated with a higher
number of social ties for pairs of tracts that are farther apart.
This suggests that highways might embody barriers to social
ties at short and medium distances, but they might foster
accessibility (hence, opportunities for social connections) at
longer distances.

M. Negative Highway Barrier Scores. One explanation for the
negative highway barrier scores in the maps displayed in Fig. 4
(main text) is the spatial distribution of ties crossing those
highways. The colors in Fig. 4 encode the Highway Barrier
Scores calculated considering all real and null ties crossing a
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Fig. SI16. Estimated effect of highways on social ties in each of the 50 metropolitan areas. The coefficients are the results of separate models for each city, where the
most detailed specification, Model 6 from Table 1 (main text) is used. Transparent markers indicate non-significant coefficients (p > 0.01).

Number of social ties (log)

(1)

Nr. of highways crossed (log) −0.039∗∗∗

(0.006)
Nr. of railways and waterways crossed (log) −0.010∗

(0.006)
Income abs. difference −0.007∗∗

(0.003)
Share of same race ties 0.010∗∗∗

(0.003)
Distance (log) −0.133∗∗∗

(0.015)
User population (product log) 0.037∗∗∗

(0.013)

Metro fixed effect Yes
Observations 672,846
R2 0.097

Table SI10. Ordinary least squares regression models on the number of social connections after randomly assigning users to racial groups
according to the underlying demographic distribution. All variables indicated with (log) are transformed using log10(1 + xij) to consider zero values.
Standard errors are clustered at the metropolitan area level. ***: p<0.01, **: p<0.05, *: p<0.1.

0.125 0.100 0.075 0.050 0.025 0.000 0.025
Coefficient

Nr. of highways crossed (log)

Nr. of railways and waterways crossed (log)

Income abs. difference

Share of same race ties

Distance (log)

User population (product log)

Not Significant
Significant (p < 0.05)

Fig. SI17. Results of 20 different regressions using stochastically assigned
race to users. Each dot represents a coefficient estimated in the same fashion as
Table SI10 illustrates.

given highway. However, ties with different length tend to con-
tribute differently to the Barrier Score, with long-distance ties
having a higher tendency of yielding negative Barrier Scores
(as illustrated in Fig. SI18). Therefore, when a highway is
crossed by more long-distance ties than short-distance ones, its
overall Highway Barrier Score can tip towards negative values.
Figure SI19 illustrates this effect in the central part of Orlando,
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Fig. SI18. The effect of highways on social ties at different distances. A. is
based on Model 2 of Tab. SI12, while B. is based on Model 4. Both figures suggests
that a higher number of highways between pairs of tracts is associated with a lower
number of social ties between them, up to an inter-tract distance of 20 km. The red
line illustrates the estimated effect and the associated confidence interval, which is
very low for all distances in both model versions. The grey lines show the result of the
same estimation for each city separately.

one of the cities discussed in Fig. 4. When considering only
short-length social ties (Fig. SI19A), all highways considered
have positive Barrier Scores, but those flip to negative when
considering long-range ties only (Fig. SI19B). In aggregate,
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Nr social ties (log) Reweighted nr social ties (log)

(1) (2)

Nr highways crossed (log) −0.013∗∗∗ −0.013∗∗∗

(0.003) (0.003)
Nr railways and waterways crossed (log) −0.013∗∗∗ −0.011∗∗∗

(0.004) (0.004)
Income abs. difference −0.018∗∗∗ −0.019∗∗∗

(0.001) (0.001)
Racial similarity 0.023∗∗∗ 0.026∗∗∗

(0.003) (0.003)
Distance (log) −0.081∗∗∗ −0.085∗∗∗

(0.015) (0.014)
User population (product log) 0.019∗∗ 0.039∗∗∗

(0.0008) (0.005)

Metro fixed effect Yes Yes
Observations 2,669,688 2,669,688
R2 0.051 0.057

Table SI11. Ordinary least squares regressions on where the dependent variable was corrected for potential under- or overrepresentation. All
the models include the metropolitan area as fixed effect. Model (1) is the same as our final model in the main text, considers real social connections
as a dependent variable and is used for comparative purposes. Model (2) uses the reweighted number of social ties as the dependent variable. All
variables indicated with (log) are transformed using log10(1 + xij) to consider zero values. Standard errors are clustered at the metropolitan area level.
***: p<0.01, **: p<0.05, *: p<0.1.

Estimator OLS OLS OLS OLS

Dependent variable log(1 + tij) log(1 + tij) log(tij > 0) log(tij > 0)

(1) (2) (3) (4)

Nr highways crossed (log) −0.013∗∗∗ −0.270∗∗∗ −0.038∗∗∗ −0.288∗∗∗

(0.003) (0.013) (0.006) (0.012)

Distance (log) −0.081∗∗∗ −0.238∗∗∗ −0.133∗∗∗ −0.292∗∗∗

(0.015) (0.013) (0.015) (0.012)

Distance X Nr highways crossed 0.197∗∗∗ 0.203∗∗∗

(0.008) (0.006)

Nr. of railways and waterways crossed (log) −0.013∗∗∗ −0.013∗∗∗ −0.009∗ −0.011∗∗

(0.003) (0.004) (0.005) (0.005)

Income abs difference −0.018∗∗∗ −0.016∗∗∗ −0.006∗∗ −0.004∗

(0.001) (0.001) (0.003) (0.003)

Racial similarity 0.023∗∗∗ 0.021∗∗∗ 0.016∗∗∗ 0.013∗∗∗

(0.003) (0.003) (0.004) (0.003)

Population (product log) 0.019∗∗ 0.018∗∗∗ 0.035∗∗∗ 0.035∗∗∗

(0.008) (0.007) (0.013) (0.012)

Metro fixed effect Yes Yes Yes Yes
Observations 2,669,688 2,669,688 672,846 672,846
R2 0.051 0.064 0.098 0.111

Table SI12. Controlled correlations at the level of the census tract pairs including interaction terms. The interaction of distance and number of
highways crossed in Model 2 and 4 are used to visualize the changing role of highways in the function of distance in Fig. SI18. Standard errors are
clustered at the metropolitan area level. ***: p<0.01, **: p<0.05, *: p<0.1.

this leads to mixed Highway Barrier Score signs (Fig. SI19C).
It is important to stress that not all highways exhibit this be-
havior, and the Barrier Score is consistently positive for many
of them. In particular, the Barrier Scores of the highways that
are discussed in Fig. 4 are positive across all distances.

N. Segmentation of highways in qualitative analysis on racial
segregation. To calculate the Highway Barrier Scores depicted
in Figure 4 in the main text, we divided the number of con-

nections traversing each highway in the actual dataset by the
corresponding count derived from the null model. This ne-
cessitates defining the specific highway segment over which
these crossings are counted. The native OpenStreetMap data
is not ideally suited for such analysis, as it delineates highways
as a series of segments that can be exceedingly brief (occa-
sionally just a few meters in length) and vary substantially in
size across different cities and highways. Conversely, treating
highways that extend for hundreds of kilometers as a single
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A

Short-distance ties

B

Long-distance ties

C

All ties

Fig. SI19. Aggregating over short and long distance ties can lead to mixed Highway Barrier Score signs. Highway Barrier Scores for the highways in central Orlando.
Red represents positive scores, blue represents negative scores. The scores are calculated considering: A. only short-distance ties up to 5 km; B. and only long-distance ties
between 15 km and 20 km; C. highway crosses from all ties.

segment would not effectively illustrate the variation in Bar-
rier Score as the highway intersects various parts of the city.
Lacking alternative data sources to guide the segmentation,
we opted for a manual approach, taking into account three
criteria: intersections, sharp bends, and a relative consistency
in segment length.

To verify the robustness with respect to different choices
of partitioning, we recalculated the Barrier Scores for sev-
eral other partitions with different maximum segment lengths.
Specifically, we also conducted automated partitioning based
on a two-step segmentation approach, testing robustness across
different values for the maximum threshold (maximum seg-
ment length) tmax. To do so, we first take all LineStrings from
the manually simplified highway network, and segmented them
with a precision of tmax/10, by means of adding additional in-
terstitial nodes along the linestring coordinates, which ensures
that the maximum distance between any two directly coordi-
nates in direct succession does not exceed tmax/10 meters).
Then, for each LineString segmented in this way, we iteratively
(adding one coordinate at each iteration step) create segments
of at most length tmax. Figure SI20 shows results for the exam-
ple of Detroit where highways were automatically partitioned
as described, considering eight different maximum segment
lengths, with tmax ranging from 500m to 3km. The patterns
obtained with alternative partitioning strategies are consistent
with those reported in the main manuscript, confirming that
our conclusions do not depend on the specific partitioning.

O. Barrier Scores of other street types. We compared the
Barrier Score calculated on highways with Barrier Scores cal-
culated considering other types of street included in Open
Street Map’s categorization. Fig. SI21 presents the distance-
constrained Barrier Score B(d) for three further street types in
addition to highways, by descending road hierarchy: primary
roads, secondary roads, and residential streets (i.e., streets
that provide direct access to housing). While all road types
yield positive scores, the highway score is markedly higher
than all others.

P. Randomization of highways. The observed decrease in Bar-
rier Scores when considering streets with less vehicular traffic,
such as residential streets, suggests that streets further down
in the road hierarchy do not significantly impede mobility
and social interactions. However, this interpretation could
be confounded by the inverse correlation between the typical
volume of vehicular traffic on streets of a given type and the

abundance of that street type in the urban network. For in-
stance, large American cities often feature only a small number
of heavily trafficked highways, contrasted by a large number
of residential streets. This raises the question of whether the
observed Barrier Score patterns on highways are merely a
statistical artifact of their relative scarcity.

To address this concern, we recompute the Barrier Scores
on a hypothetical highway network of comparable length to
the real network, but with randomly placed sections. To build
the randomized version of a highway network of total length L,
we use an iterative approach. At each iteration i, we select two
random points within the bounding box of the target city, and
find their respective closest nodes on the street network. We
connect the two nodes with the shortest path between them,
and add the obtained path to the randomized network. Let
the length Li be the total length of the randomized network up
to iteration i. To ensure a minimal residual between the real
and randomized networks, we discarded any iteration i that
would cause the randomized network’s size to exceed the real
network size by more than 1% (namely, when Li ≥ 1.01 · L).
The algorithm stops Li ≈ L, which we empirically represent
with the range [0.99 · L ≤ Li ≤ 1.01 · L]. The Barrier Scores
are then averaged over 50 versions of the randomized layout
for each city considered.

Fig. SI22 presents the results for a selected set of cities. In
all cases, the Barrier Scores of the randomized street network
were significantly lower than that of the real street network,
particularly for ties of length up to 6-8km. This is true for cities
that are not crossed by any major natural barriers (i.e., Dallas,
Atlanta, Miami) as well as cities that are built around major
water bodies (i.e., Boston, Pittsburgh, Seattle). However, the
randomized street model still exhibits positive Barrier Scores,
with values fluctuating with distance in a manner similar to
the real highway network. This suggests that the randomized
highway network is subject to the same spatial constraints
imposed by the city’s morphology and actual street network
layout. For example, most shortest paths connecting the north-
ern and southern parts of Seattle are bound to pass through
the highway bridges that cross the Lake Union connecting
Washington Lake to the bay (Interstate 5 or Route 99). Con-
sequently, the spatial patterns of the randomized highway
network cannot be fully disentangled from those of the real
street network. Therefore, our results should be interpreted
as upper bounds of the contribution of the highway network
sparsity to the Barrier Score that we observe on the real data.
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Fig. SI20. Highway Barrier Scores in Detroit, calculated on highway segments of different length. Highways are in color, following the color coding of Fig. 2 in the main
text. Segment length used in automated partitioning is reported in the bottom-right corner of each map.
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Fig. SI21. The Barrier Score decreases with social tie distance for highways,
to a lesser extent for other street types. The distance-constrained Barrier Score
B(d) across multiple distances, averaged over all cities, and calculated for different
types of roads. Across all distances, streets that are higher up in the road hierarchy
have higher Barrier Scores.

Q. Barrier effect in urban vs. suburban areas. Our results
are based on data sets that have been spatially limited to
metropolitan areas as defined by the US census∗. To test
how population density and city center proximity affect our
results, we conduct two additional experiments with more
restrictive spatial limitations: first, limiting our input data to
functional urban areas (FUAs) as defined by the Organisation
for Economic Co-operation and Development† (OECD); and
second, limiting our input data to a 20 km radius from the
city center. The coordinates of the city centers we selected are
reported in Table SI1. The radial areas around the city centers
on average cover 10% of the metropolitan areas, and contain
55% of our Twitter population. FUAs on average cover 20%
of the metropolitan areas, and contain 80% of our Twitter
population. Crucially, we find that FUAs contain 52% of the
highway infrastructure of metropolitan areas, and the density

∗https://www.census.gov/programs-surveys/geography/guidance/geo-areas/urban-rural.html
†https://www.oecd.org/en/data/datasets/oecd-definition-of-cities-and-functional-urban-areas.html
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Fig. SI22. Random street layout. Barrier Score for social ties at distance d for a
model that considers the real highway network compared to a model that uses a
randomized version of the highway network. Cities on top panels A-C are selected
among cities without major natural barriers within their built environment, whereas
cities on the bottom panels D-F are built around major water bodies.

of highways in FUAs (calculated as the total highway length
per area unit) is 8.4 times higher than the highway density in
suburban areas. Barrier Scores for urban areas follow closely
the pattern obtained for the full dataset, whereas scores for
suburban areas are generally lower and less stable (Fig. SI23A).
The difference is less pronounced when comparing the 20 km
radius around the center with the area outside that radius
(Fig. SI23B). These findings provide additional evidence that
the barrier effect of highways is more prominent in densely
populated areas, and is less related to the proximity to the
city center.

We also experiment with including distance to the city
center in our regressions. We calculate the distance of each
census tract from the identified city center and measured the
distance of the census tract pairs from the center using the
logarithm of the product of distances. This variable takes
lower values when both census districts are close to the city
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Number of social ties (log)

(1) (2) (3)

Distance from center (product log) 0.012∗∗∗ 0.003
(0.004) (0.003)

Nr. of highways crossed (log) −0.013∗∗∗ −0.012∗∗∗

(0.003) (0.003)
Nr. of railways and waterways crossed (log) −0.013∗∗∗ −0.012∗∗∗

(0.004) (0.003)
Income abs. difference −0.018∗∗∗ −0.017∗∗∗

(0.001) (0.002)
Racial similarity 0.023∗∗∗ 0.023∗∗∗

(0.003) (0.003)
Distance (log) −0.081∗∗∗ −0.109∗∗∗ −0.085∗∗∗

(0.015) (0.012) (0.013)
User population (product log) 0.019∗∗ 0.023∗∗∗ 0.017∗∗

(0.008) (0.008) (0.008)

Metro fixed effect Yes Yes Yes
Observations 2,669,688 2,669,688 2,669,688
R2 0.051 0.043 0.051

Table SI13. Ordinary least squares regression models on the number of social connections between pairs of census tracts including spatial
and socio-demographic features. All the models include the metropolitan area as fixed effect. Model (1) is our final model in Table 1 of the main text
and is used for comparison. The additional variable of distance from the center is significant in the simple model (2), but loses significance in a model
that takes into account distance, user population and socio-economic differences between census tracts. The main variable for the number of highways
crossed does not change when distance from the center is taken into account. All variables indicated with (log) are transformed using log10(1 + xij) to
consider zero values. Standard errors are clustered at the metropolitan area level. ***: p<0.01, **: p<0.05, *: p<0.1.

center. Table SI13 shows that considering distance from the
center does not change our main results.

Last, we ran OLS regressions for pairs of tracts that occur
in urban areas (Table SI14). We consider one model including
tracts intersecting the urban area (Model (2)) and one model
including tracts that are fully contained within the urban area
(Model (3)). Both models exhibit coefficients that are in line
with the regression on all tracts (Model (1)).
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Fig. SI23. Barrier Scores are higher in urban areas. Barrier Scores versus distance
calculated considering different subsets of users. A. Comparison between urban and
suburban areas. Urban areas account for 80% of the population and for about 20% of
the full metropolitan areas. B. Comparison between area around the city center (20
km radius) and area outside the center. The central radia contain about 55% of the
population and account for 10% of the full metropolitan areas. Values are averaged
over 20 randomized runs of the null model, and then macro-averaged over the 50
cities considered. 95% confidence intervals are shown. Both plots provide the values
calculated on all users as reference.

R. Alternative social network data: Gowalla. Studying the rela-
tionship between the built environment and social connections
requires large-scale social network data with fine-grained ge-
ographical information. To illustrate the robustness of our
results, we repeat our computations using the dataset from
the online social platform Gowalla, derived from its API (39).

0 1 2 3 4 5 6 7 8 9 10
Distance (km)

SanFrancisco

Dallas

LosAngeles

Austin

OklahomaCity

ALL

Barrier Score

-30%
-20%
-10%
0%
+10%
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Fig. SI24. Barrier Score vs. distance in the Gowalla database. Heatmap of Barrier
Scores B(d) grouped into 0.5 km distance bands for the five cities most represented
in the Gowalla dataset. Color denotes Barrier Score, areas of the squares denote
relative number of links per distance band. The Barrier Scores are considerably higher
than those observed on average in our Twitter dataset, across all distances.

Gowalla is a location-based social network where users share
their locations by means of check-ins. Unlike in Twitter,
Gowalla is designed for connecting people who know each
other in real life. The undirected friendship network from
the site consist of 196,591 nodes and 950,327 edges. While
the social network part of the data is similar to our Twitter
network based on mutual followership, the geographic infor-
mation available to determine the home location of users is
different.

The Gowalla data contains 6,442,890 check-ins across 50
cities performed by 107,092 users from February 2009 to Oc-
tober 2010. Inspired by (39), we use the following procedure
to determine the home location of users: First, as a minimum
requirement, we focus on users who have at least 10 different
visited locations in the dataset, and discard others. Second,
we place check-ins into size 10 H3 hexagons (Uber’s Hexagonal
Hierarchical Spatial Index (40)). These hexagons refer to an
average 15000 m2 area, which is close to the buffer area of a
point with a 70 m radius. Third, we identify the hexagon in
which each user made the most visits as their home location

Aiello et al. March 19, 2025 | 17



Number of social ties (log)

Both tract
within

the metro area

Both tracts
within

the urban area

Both tracts
intersect

the urban area

(1) (2) (3)

Nr. of highways crossed (log) −0.013∗∗∗ −0.011∗∗∗ −0.009∗∗∗

(0.003) (0.003) (0.003)
Nr. of railways and waterways crossed (log) −0.013∗∗∗ −0.010∗∗ −0.012∗∗

(0.004) (0.004) (0.003)
Income abs. difference −0.018∗∗∗ −0.018∗∗∗ −0.018∗∗∗

(0.001) (0.002) (0.002)
Racial similarity 0.023∗∗∗ 0.025∗∗∗ 0.022∗∗∗

(0.003) (0.004) (0.003)
Distance (log) −0.081∗∗∗ −0.089∗∗∗ −0.092∗∗∗

(0.015) (0.017) (0.018)
User population (product log) 0.019∗∗ 0.014∗ 0.020∗∗

(0.008) (0.008) (0.009)

Metro fixed effect Yes Yes Yes
Observations 2,669,688 1,400,386 2,159,802
R2 0.051 0.054 0.054

Table SI14. Ordinary least squares regression models on the number of social connections between pairs of census tracts including spatial
and socio-demographic features. All the models include the metropolitan area as fixed effect. Model (1) is our final model in Table 1 of the main text
and is used for comparison. Model (2) limits the sample behind the model to census tract pairs within the urban area of metropolitan areas, while model
(3) limits the sample to census tract pairs that at least intersect with urban area inside metropolitan areas. Our main variable for the number of highways
crossed does not change in the models based on limited samples. All variables indicated with (log) are transformed using log10(1 + xij) to consider zero
values. Standard errors are clustered at the metropolitan area level. ***: p<0.01, **: p<0.05, *: p<0.1.

City Users Social links
Austin 2,050 17,756
Dallas 1,539 8,054

San Francisco 1,254 5,070
Los Angeles 1,068 2,362

Oklahoma City 481 5,084

Table SI15. Number of geo-referenced users and social ties between
them in the five most represented cities in the Gowalla dataset

if they have at least 5 check-ins. We tested several more re-
strictive configurations, including time of day filters, but the
results were the same for most users.

As a result of these filters, we were left with only five cities
with a sufficient amount of data to extract reliable measure-
ments (Tab. SI15). The Barrier Score for these cities are
considerably higher than those obtained from the Twitter data
for the same cities (Fig. SI24), which corroborates the validity
of our results, and in addition suggests that the interplay
between highways and social connections may be even more
pronounced for stronger social ties.

S. Beeline distance vs. walking distance. In our spatial mod-
eling, we conceptualize social ties as straight segments con-
necting nodes, with the distance between points calculated as
the length of these segments in Euclidean space, a measure
often referred to as ‘beeline’ distance. This approach facili-
tates an intuitive depiction of spatial distance and its efficient
computation. To determine whether using straight segments
is a good enough approximation, we recalculate the Barrier
Scores using shortest walking distance rather than crow-fly
(beeline) distance. This requires to recompute the null model,
rewiring a social tie i, j to form a new tie i, k such that the
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Fig. SI25. Calculating Barrier Scores for beeline versus walking distance in 4
cities shows robust distance patterns. Averages over 20 randomized runs of the
null model are shown, together with 95% confidence intervals.

shortest walking distance is preserved (dwalk
ij = dwalk

ik ). Given
the algorithm’s significant computational cost, we limited this
analysis to a selection of 4 cities that i) have a relatively
small social network, with less than 35k edges, and ii) feature
natural topological barriers within the city boundaries (rivers
and lakes). For each city, we executed 20 different random
realizations of the null model. The results are presented in
Figure SI25. The variation of the Barrier score with respect to
walking distance follows a very similar pattern to the Barrier
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Score calculated with crow-fly distance. Moreover, the Bar-
rier Score is often higher when considering walking distance,
suggesting that our estimates of the barrier effect of highways
are conservative.

T. Effect of dij deterrence on the Barrier Score. The deterrence
factor dij has a discounting effect that impacts mostly the
component of the Barrier Score that is given by short-distance
ties – namely, the values of B(d) for low values of d. This
becomes obvious when comparing extreme values of d. For
example, the ties that contribute to the calculation of the Bar-
rier Score B(d) for the distance bin d = [10000m, 10500m] are
all characterized by roughly the same length (±5%), therefore,
the number of highways these ties cross (cij) will be discounted
by approximately the same value of dij . Conversely, ties in
the bin d = [0m, 500m] have a higher relative length variation,
and the dij deterrence might impact quite differently two ties
in the same bin. We included dij as a discounting factor pre-
cisely to even-out any intra-bin variations that could end up
disproportionately representing the contribution of longer ties.

We tested empirically how B(d) changes when removing
the dij deterrence from the formula, to exactly understand
the consequences of the dij choice. Figure SI26 shows that: i)
the impact is mostly limited to the short distance bins, ii) the
magnitude of the impact is small, and iii) the length-discounted
version of the score tends to underestimate the barrier effect
compared to the non-discounted version, suggesting that our
estimates of the barrier effect of highways are conservative.

U. The Color of Highways: The racial context of US highway
construction. Social segregation can happen along many dif-
ferent axes; one of the most obvious ones to scrutinize in
contemporary US cities is race. Segregationist practices were
ruled out by law only in the 1960s, with the Civil Rights Acts
of 1964 and 1968, the former outlawing “discrimination or
segregation on the ground of race, color, religion, or national
origin” (41) and the latter explicitly expanding this principle
to the provision (selling and renting) of housing (42). Prior to
this, however, explicitly racist and exclusionary urban policies
such as redlining and racial zoning were widely practiced (43),
and their legacy is still lingering up until today (44). The
Interstate Highway System (IHS) is a compelling example
thereof (45, 46). From the beginning of its construction in
1956, the IHS fostered urban sprawl for decades to come and
played a major role in the suburbanization of US cities, which
in turn is racially biased (47–50). By the time that mas-
sive government-funded highway construction got underway
throughout the country in the late 1950s, many US urban
areas had majority Black inner cities. Many cities followed
the advice of urban planner Robert Moses, not only on his
proclaimed imperative that “most of our new (...) expressways
(...) must go right through cities and not around them” (51),
but also in his unambiguously racialized suggestion that “the
practical solutions of the traffic problems in cities should be
coordinated with slum clearance” (51), which meant building
highways through Black neighborhoods. The choice of spe-
cific sites within a city where highways would lead through
sparked a great number of protests across the country, known
as Freeway Revolts (52). There are numerous, extensively
studied examples of highway construction sites tearing apart
or displacing historically Black communities (53–56), prover-
bially known as “white roads through Black bedrooms” (57).

Likewise, many decision-makers used such major construction
projects as an instrument to get rid of so-called “ghettos” or
to spatially exclude underprivileged communities (43, 58, 59).
Effects of both practices are visible in today’s patterns of racial
residential segregation. Below, we explore these effects and
their historical context for our nine case study cities.

Cleveland, OH has a long history of racial exclusion (60).
Ever since urban highway construction gained momentum in
the late 1950s, local infrastructural decisions have often been
heatedly disputed at the intersection of race, class, and sub-
urbanization (61, 62). The two suburban neighborhoods of
Shaker Heights and Cleveland Heights are well-known exam-
ples of these disputes. In the 1960s, when both neighborhoods
were predominantly white and particularly wealthy, initial
plans to construct a set of highways through these neighbor-
hoods were successfully overturned. This sparked protests
by local residents, supported by Carl Stokes, the first Black
mayor of a major US city (63, 64). From 1976 onwards, traf-
fic diverters were installed at the suburban fringe of Shaker
Heights, dubbed by some as the “Berlin Wall” for Black peo-
ple (45) and de facto keeping out a lower income minority;
many inhabitants saw the traffic diversion measures as racially
connotated (45, 62). As of today, both Shaker Heights and
Cleveland Heights are regarded by some as a symbol of suc-
cessful suburban racial integration (65). Overall, however,
Cleveland is one of the poorest and most racially segregated
among major US cities (60, 66, 67). At the same time, Cleve-
land ranks highest in our computations of the city-wide Barrier
Score. Moreover, the Barrier Score is high for I-77, which sep-
arates the cluster of predominantly Black communities in the
east from the rest of the metropolitan area (see Fig. 4A in the
main text).

Orlando, FL. In 1961, the I-4 in Florida became one of
the first highways supported by the Federal-Aid Highway
Act of 1956 to officially celebrate its opening (68). Within
Orlando, the I-4 was built parallel to Division Street (today Di-
vision Avenue), a “dividing line” (69) between white and Black
neighborhoods. The I-4 further emphasized this racial divi-
sion (69, 70). The neighborhood of Parramore, once a thriving
Black community, suffered a particularly heavy impact from
the construction, with 551 Black properties displaced. I-4 thus
literally cemented an already existing racial separation, further
acting as a “class barrier” (71) as it separated Parramore from
downtown Orlando (72). The construction of the Expressway
408 further exacerbated this impact, isolating the Griffin Park
public housing project from the rest of Parramore (71). In
a 2006 report, the City of Orlando identified the 408 as a
“development barrier” (73) for the neighborhood. As of today,
Orlando still remains highly segregated, with the I-4 cutting
through the city “like a picket line” (70). At the same time,
both I-4 and Expressway 408 have high Barrier Scores in our
results, as shown in Fig. 4B in the main text.

Milwaukee, WI. Next to Cleveland, Milwaukee is the sec-
ond city which appears both in the list of 10 most segregated
US cities (74) and in the top 3 of our Barrier Score ranking
(Fig. 4C in the main text). In the 1960s, when the Black pop-
ulation of Milwaukee was still forcefully constrained to live in
the North Side, the city was home to numerous protests against
segregation. In 1967, for example, the Milwaukee’s NAACP
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Fig. SI26. The impact of the deterrence dij on Barrier Scores. A. Barrier Scores at distance d. B. Barrier Scores calculated without considering the distance deterrence dij .
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(National Association for the Advancement of Colored People)
Youth Council marched from North to South across the 16th
Street Bridge, which was jokingly called “the longest bridge in
the world” for connecting Africa and Poland, given its location
between the majority-Black North Side, and the (at that time)
almost exclusively Polish Old South Side (75). The construc-
tion of I-43 in the 1960s severely impacted the North Side’s
Bronzeville neighborhood, a formerly vibrant Black commu-
nity. Many of Bronzeville’s inhabitants were displaced, and
commercial areas were demolished (53, 76). I-43 also impacted
the South Side, leading to housing shortage. However, while
other communities within Milwaukee were dissipated as a con-
sequence of highway construction, the Southside remained
“solidly Polish” (77). In our computations for Milwaukee, we
see that both the I-794 (separating the majority Black North
from the majority white South), and the I-43 (the northern
part of which disrupted many Black neighborhoods) have high

Barrier Scores, as illustrated in Fig. 4C in the main text.

Oklahoma City, OK. In contemporary Oklahoma City, the
“city’s divided soul” (78) is most prominently expressed in the
I-235, which separates majority Black neighborhoods in the
East from majority white neighborhoods in the West. In con-
trast to previously mentioned cities, however, urban highway
construction in Oklahoma City did not appear as immediate
impact on previously thriving communities. For example, the
I-235 (formerly known as the Centennial Expressway) was con-
structed in the late 1980s, creating a link between I-35, I-40,
and I-44, and simultaneously isolating the largest historically
Black neighborhood of Deep Deuce from the rest of the inner
city (79, 80). However, the construction of I-235 was not so
much a catalyst of Black neighborhood destruction, but rather
the final blow to a neighborhood whose vitality and street life
had already been eroded by several decades of car-centric plan-
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ning and “urban renewal” (81). As civil right activist James
Baldwin succinctly put it in an interview with Kenneth Clark
in 1963, “Urban renewal (...) means Negro removal” (82). Un-
der the auspices of OCURA (Oklahoma City Urban Renewal
Authority), established in 1961, entire neighborhoods of Okla-
homa City fell victim to major construction projects (83, 84).
The University Medical Center urban renewal project, for ex-
ample, displaced over 700 families, over 90% of which were
Black (85). Lastly, in the recent two decades, Oklahoma City
has witnessed a complex process of gentrification, most promi-
nently underway in Deep Deuce (81, 86). The Barrier Scores
we computed for Oklahoma City are particularly high in the
inner city, for all highways mentioned above: I-35, I-40, I-44,
and I-235 (see Fig. 4D in the main text).

Detroit, MI is known to be not only within the top 10
metropolitan areas by numbers of Black inhabitants (87), but
also as one of the most racially segregated cities in the US (88).
The city has a complex history in which the rise of the auto-
mobile, then deindustrialization, suburbanization and political
marginalization are intertwined with a legacy of systemic and
physical violence against Black people (58). The Birwood
Wall (also known as Eight Mile Wall or Wailing Wall) is an
infamous concrete symbol of Detroit’s predicament. It was
built in 1941 by a private developer, with the aim of secur-
ing governmental funds for the construction of an all-white
residential complex, which, as by the Federal Housing Admin-
istration’s requirements, had to be physically separated from
the adjacent majority Black area redlined as “slum” (58, 89).
As of today, the Birwood Wall is still standing, located next to
the Eight Mile Road, which in turn is closely associated with
racial segregation in popular culture, manifesting the divide
between the Black inner city and the white suburbs (90). From
the late 1940s onwards, land clearing for highway construction
additionally exacerbated Detroit’s already ongoing housing
crisis, displacing tens of thousands of residents, most of them
Black, often on short notice and without proper assistance to
find a new dwelling (58, 91). Numerous Black neighborhoods
were destroyed by highway construction: the I-75 and I-375
practically erased Black Bottom, Hastings Street, Paradise
Valley, and parts of the Lower East Side; while the formerly
coherent urban fabric in the Western part of the city got bi-
sected by I-94 and M10 (58, 59, 91, 92). For all highways
mentioned above, the Barrier Scores in our computations are
at their highest within the city center, in proximity of the
historically Black (former) neighborhoods of Black Bottom
and Paradise Valley, while Eight Mile Road stands out as a city
limit delineation (marking the transition between counties)
with a particularly high Barrier Score (see Fig. 4E in the main
text).

Austin, TX. As of today, Austin is the most economically
segregated large metropolitan area in the US (93). At the
same time, as the Black Austin Coalition underlines, income
inequality amongst Austin’s residents is strongly associated
with race (94). The infamous Austin City Plan of 1928 sug-
gested to “solve” the “race segregation problem” (the “problem”
being how to segregate Black people within “constitutional”
limits) by implementing a set of measures which would force
Black people into moving to the East side of the city, with
the East Avenue as officially proposed segregation line. The
implementation of the City Plan had the foreseen consequences

of Black Austinites being forced to move to the East side of
the city (94, 95). Thus, thirty years later, building the I-35
along East Avenue meant “solidifying the dividing line” (96)
between two racially disparate parts of the city, notably with
only a handful of crossings between East and West. Our Bar-
rier Score computations also depict the I-35 as clear dividing
line between two parts of the city (Fig. 4F in the main text).
Over the following decades, a combination of systemic neglect,
“urban renewal” (including the seizing of Black property and
systematic funding of non-Black serving projects), and subur-
ban sprawl fostered by highway presence severely impacted
Black communities in East Austin (94, 97, 98). In the present
time, gentrification is underway in East Austin, with real
estate prices rising tenfold in the last 20 years. Simultane-
ously, Austin is currently the only large city in the US that
is suffering a net decrease in Black inhabitants in spite of an
overall rapidly growing population (99). As of 2024, plans are
underway for the I-35 to be expanded from 16 to 22 lanes in
Downtown (100).

Columbus, OH Several highways (I-70, I-71, I-670) bisect
the urban fabric of Columbus, Ohio (see Fig. 4G in the main
text). The alignment of these highways with former redlined
areas is particularly startling (101). The chilling words of
Warren Cremean, an official of Ohio’s Department of Trans-
port, illustrate the intentionality behind routing decisions:
“[W]e married highway money and urban renewal money and
wiped out (...) the worst slum in the state of Ohio” (quoted
in an interview with Rose and Seely (1990) (102)). In sev-
eral locations in the city, highway trajectories went directly
through redlined neighbourhoods. Flytown, a diverse, but
socioeconomically disadvantaged neighbourhood with many
Black and Irish inhabitants, was erased from the map to make
way for I-670 (103). Large parts of the Near East Side, which
at the time of construction was predominantly Black, faced
large-scale destruction by all three major highways in the city:
I-70, I-71 and I-670. Two historically Black neighbourhoods
in the Near East Side were particularly affected. I-70 was
built right through Hanford Village, by that time a bustling
Black community, destroying many homes and cutting of the
Western part of the neighbourhood from the rest of it (103).
Similarly, King-Lincoln/Bronzeville saw the construction of
I-71 through its core, entailing the demolition of homes and
businesses and severely hindering access to this Black commu-
nity in combination with I-670 along its borders; at the same
time, the predominantly white, affluent neighborhood Bexley,
east of Bronzeville, was spared from the highways (104). On a
larger scale, I-71 disconnected the predominantly Black Near
East Side from Downtown.

Richmond, VA was the Capital of the Confederacy during
the Civil War; in the following decades, the city became deeply
segregated, with redlining practices further exacerbating racial
divisions (101). The neighbourhood of Jackson Ward gained
key importance for Richmond’s Black community, dubbed
“Black Wall Street” and “Harlem of the South” prior to World
War II. In the 1960s, however, the I-95 and the I-64/I-95 inter-
change were built directly through Jackson Ward, destroying
numerous homes and businesses, and cutting off the neigh-
bourhood’s northern part, Gilpin (see Fig. 4H in the main
text). The public housing community of Gilpin Court was
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thus cut off both from Jackson Ward and from the rest of Rich-
mond, with only a few physical connections bridging across
the highway. “Urban renewal” brought further displacement
to Jackson Ward through large-scale construction projects
such as the Coliseum (55). Population decline, urban neglect
and continuously high poverty rates further impacted Rich-
mond communities in the vicinity of the newly constructed
highways, particularly north of I-95 (54, 105). Historically,
Richmond’s segregationist policies in public housing further
contributed to a “concentration of racialized poverty” (54). To-
day, Richmond’s inhabitants are confronted with particularly
high eviction rates entangled with racialized dispossession (55),
giving rise to initiatives like Residents of Public Housing in
Richmond Against Mass Evictions (RePHRAME) (106). Most
recently (as of 2023), the city of Richmond has obtained a
grant from the US department of transportation, dedicated to
“reconnecting” Jackson Ward with the rest of the city across
highway division lines (107).

Nashville, TN. Nashville’s urban landscape is heavily frag-
mented by three major interstates: I-24, I-40, and I-65 (see
Fig. 4I in the main text). The trajectory of I-40 displays a
“kink in the road” (108) through North Nashville: When going
from West to East, instead of following Charlotte Avenue,
I-40 is routed one mile further north. The construction of
I-40 began only in 1967; its exact route, however, had already
been decided a decade prior, without duly involving the pub-
lic. Initial plans with a more direct routing of I-40 had then
been discarded in favor of introducing said “kink in the road”,
which implied major disruptions for the majority Black North
Nashville. Due to misleading information and legal process
violations from the authorities’ side, the actual plans for I-40
and the destruction that it entailed only became clear to the
residents of North Nashville as construction had already be-
gun (108). In response, the Nashville I-40 Steering Committee
was formed; their case Nashville I-40 Steering Committee v.
Ellington won a temporary restraining order – the first time
that highway construction had been “halted by claims of racial
discrimination” (109). However, the case was ultimately lost
in federal court; the I-40 ended up ripping through North
Nashville as planned and “bulldozed local prosperity in the
name of national economic development” (44). I-40 was con-
structed along and through Jefferson street, Nashville’s main
Black business and cultural district, which became severely im-
pacted and divided. 80% of Black-owned businesses were either
directly demolished, or damaged through reduced accessibility
for clients. The same highway also “cut in half a thriving
academic cluster” (108) as it separated three major Black
higher education institutions, Fisk University, Meharry Medi-
cal College, and Tennessee A. & I. University (later Tennessee
State University), both from each other and from surrounding
majority Black neighbourhoods. Real estate values dropped
in the area and housing conditions quickly and severely de-
teriorated (108). Ultimately, the construction of I-40 and
its consequences represent a decisive contribution to today’s
rampant poverty rates in the area (110).
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