
Peer-to-Peer Networking and Applications manuscript No.
(will be inserted by the editor)

An identity-based approach to secure P2P applications
with Likir

Luca Maria Aiello · Marco Milanesio · Giancarlo Ruffo · Rossano

Schifanella

*** PREPRINT ***

Accepted: 21 December 2010

Abstract Structured overlay networks are highly sus-

ceptible to attacks aimed at subverting their structure
or functionalities. Although many secure architectural

design proposals have been presented in the past, a

widely accepted and comprehensive solution is lacking.

Likir (Layered Identity-based Kademlia-like Infrastruc-

ture) is our solution for implementing a secure Peer-
to-Peer network based on a Distributed Hash Table.

Our purpose is to focus on three main goals: (1) pro-

viding security services and a secure overlay infrastruc-

ture against the vast majority of security threats on
P2P systems, (2) dynamically creating a bridge between

randomly generated peer identifiers and user identi-

ties, and (3) supplying the developer with a middleware

API that can easily deal with peers’ identities. Plac-

ing the emphasis on user identity results in a highly
secure distributed framework which is very fitting for

privacy-aware and efficient implementation of identity-

based applications like social networking applications.

Detailed security analysis and performance evaluation
are provided. Moreover, an implementation of Likir is

introduced and a case study is presented in order to

show its practical use in a real-life example.

Keywords DHT · Routing Poisoning · Sybil Attack ·
Storage Attacks · Distributed Social Networking

Systems

Luca Maria Aiello · Marco Milanesio · Giancarlo Ruffo · Rossano
Schifanella
Università degli Studi di Torino, Computer Science Department
C.So Svizzera, 185 - 10149 Torino, Italy
Tel.: +039-0116706711

Fax: +039-011751603
E-mail: aiello@di.unito.it

milane@di.unito.it · ruffo@di.unito.it · schifane@di.unito.it

1 Introduction

Recent research on reliability of Peer-to-Peer (P2P) ov-
erlay networks has focused mainly on three aspects:

scalability of fully decentralized architectures [13], in-

centive mechanisms against free-riding [20] and Dis-

tributed Hash Tables (DHTs) security problems. Of

course, security is very relevant, especially when pro-
posed architectures are addressed to the implementa-

tion of applications that are more critical than file-

sharing. Nevertheless, despite the efforts spent in secur-

ing such systems, many security threats are still largely
feasible on overlay networks, since Sybil-based attacks,

attacks on storage, as well as attacks on routing and

DDoS remains without widely accepted countermea-

sures. Furthermore, the new horizons that are emerging

for DHTs’ usage provides the deployment of increas-
ingly high-level applications, like Social Networking Ap-

plications. In this context, a very comprehensive and

strong security countermeasure has even a greater prac-

tical importance, because sensitive users’ information is
exchanged and possibly stored in the network.

This paper describes Likir, a secure extension of the

Kademlia protocol. When using a P2P overlay network,
one of the most problematic issues arises with the un-

controlled assignment of node identifiers, that are used

to set the responsibility of content storage and to route

messages. The idea behind Likir is to complement such

identifiers with a strong node’s identity notion which
allows to build a secure, authenticated communication

protocol that provides an effective defense against well

known attacks. By exploiting a Certification Service,

we give peers verifiable and certificated node identifiers,
which are tightly coupled with the users’ identities. Do-

ing so, most of the security issues are overwhelmed, or

at least strongly mitigated, under a very general adver-

2

sary model. Likir security services are transparent, en-

abling developers to consider decentralized implemen-

tations of distributed applications, without concerning

to many of the security bonds that emerge from the

adoption of such solutions.

In addition to improving the DHT security features,

the embedding of a strong identity management into

the overlay allows to provide services to the applica-
tion level. First, reputation and trust management al-

gorithms can be deployed on such systems, because a

proof of certain actions from a specific peer can be eas-

ily provided to other peers if our protocol is adopted.
Second, a safe identity-based index side filtering, which

allows the aggregation of different services on a user

identity basis, can be built; this feature allows the com-

position of many application modules, facilitating their

interoperability .

The advantage of including identity in the overlay

is then twofold. First of all, reaching this at the ap-

plication level will worsen the load on the application
itself, thus increasing its complexity. Conversely, if this

is achieved at a routing level, the same identity-based

services can be reused by several applications. Further-

more, integration between (possibly) many different ap-
plications is made easier because of the sharing of the

same identity. This has a significant impact on the de-

sign of new applications, because it allows mash-ups

based on the explicit link that resources have with their

owner.

A simple Application Level Interface that can be

used by the developer in a very straightforward way is

described along with its Java implementation. A prac-
tical case study based on a social networking setting is

described in detail.

Lastly, an evaluation of the impact of the security
layer on a given P2P system is needed. It is well known

that authentication and verification services add a sig-

nificant overhead to the performance of a given archi-

tecture. For this reason, we performed an extensive test

on a real network environment in order to assess the
feasibility of our approach.

1.1 Contributions and roadmap

This paper is rooted in another work by the same au-
thors, originally presented in [2], where we focused ma-

inly on the definition of the peer interaction protocol.

Here, we extend the former work both in width and

depth. We define the Likir architecture more in detail
and introduce a deeper discussion about attacks. We

perform an accurate security analysis, a performance

analysis performed through PlanetLab experiments, a

discussion on the Reputation Service together with a

simulative experiment on its effectiveness and an API

definition. Furthermore, the recent attention of the P2P

community toward Online Social Networks (see Section

7) made the time ripe to highlight the contribution that
the Likir framework can produce in a distributed Social

Network System setting. For this reason, we describe

a wider architectural specification that includes a web

registration service and we present a case study focused
on two simple identity-based applications; such contri-

butions are aimed to show Likir’s inbred adaptability

to a distributed Social Network System setting.

The paper is organized as follows. Section 2 gives the
state-of-the-art in Distributed Hash Tables research, fo-

cusing particularly on Kademlia and in previous at-

tempts in securing DHTs. In Section 3 the adversary

model that we are taking into account and a description

of known attacks and ad-hoc countermeasures are pre-
sented. Section 4 presents the architectural model and

the Likir protocol, explaining the involved primitives for

the nodes’ interactions. The following sections present

the performance and the security analysis (Section 5)
and the performance evaluation computed through em-

ulative tests (Section 6) carried on PlanetLab. Section

7 presents Likir API together with a case study. Con-

clusions are given in Section 8

2 Background

Next, we briefly expound the features common to all

Distributed Hash Tables (DHT) in order to establish a

useful terminology for the following; then the specific
case of Kademlia DHT, on which Likir is based, is an-

alyzed with more detail.

2.1 Structured P2P systems

Distributed Hash Tables (e.g.,[46,37]) are a class of

fully distributed systems which provide an exact-match

lookup functionality: given a certain key from a flat

identifier space, they retrieve the value associated with
such key. DHTs can be exploited to develop a wide

range of applications (e.g. [38,32,24]).

From an application point of view, at a high level

of abstraction, a generic DHT system could be defined
with a 6-tuple:

DHT = 〈K, N, C, κN , κC , λ〉
κN : N → K

κC : C → K

λ : K → {N}
∗

3

K is the DHT keyspace, a large (usually 2128 or 2160)

set of numeric keys, N is the set of online nodes and C

is the set of all the resources owned by the users (we call

them contents). An identifier chosen from the keyspace

is assigned to every node (function κN) and content
(function κC). Usually, nodes generate randomly their

ID (the NodeId) while the content ID is calculated from

the cryptographic hash (for which a collision is unlikely,

for large values of |K|) of the content payload or from
its metadata; however the definition of the function κC

could be delegated to each specific application, depend-

ing on the structure of the resources. λ is a function of

responsibility that associates the task of storing all the

content marked with the same key to a set of replica
nodes; these nodes are called indexes for the key. A

node interaction protocol can perform a lookup proce-

dure that, in O(log|N |) steps, is able to locate the index

nodes for any key.

Various DHT specifications differ in the routing ta-

ble structure and updating procedures and in the na-

ture of the lookup procedure (which can be either iter-
ative or recursive). A real DHT implementation must

also provide several other features like techniques to

maintain contents over time even with a high node

churn rate, or caching strategies that avoid hot spots
for popular keys.

We talk about structural components of a DHT re-

ferring to four elements:

– The mechanism for identifiers assignment

– The routing table, containing the contacts of the

known nodes
– The storage of contents

– The interaction protocol between nodes which de-

termines the lookup procedure and the bootstrap,

that is the join process of a new node to an existing

network.

2.2 Kademlia

Kademlia has a 160 bit keyspace and assigns random

NodeIds at the beginning of the bootstrap phase; con-

tents are marked with keys determined by the applica-
tion above (e.g. with SHA-1 hash). The routing table

is organized into k-buckets, lists of at most k contacts

structured as follows:

〈IPaddress, UDPport, NodeId〉

Such triples are kept ordered with a Last Recently Seen

(LRS) policy. Buckets are arranged as a binary tree
and contacts get assigned to buckets according to the

shortest unique prefix of their NodeIds. There are no

specific routing update messages; the routing table is

updated just when a generic message is received. If the

sender’s contact is already present in the corresponding

k-bucket, the contact list is rearranged in accordance

with the LRS policy, or added otherwise; if the k-bucket

is full, the contact at the bottom of the list is probed
and replaced if it fails to answer. A splitting procedure

is used to extend the routing table: when a contact is

added to the k-bucket corresponding to the local node’s

NodeId, if that k-bucket is full it is split into two new
k-bucket that become children of the previous one in

the binary tree.

Kademlia lookup is an iterative procedure that aims

to identify the k nodes whose NodeIds are the closest to
a given key; the distance between two generic elements

of the keyspace is their exclusive or (XOR), interpreted

as an integer. The lookup starts by selecting the α con-

tacts closest to the target id; at each lookup step, α

nodes are queried with a UDP RPC called find node

for the k contact they know nearest to the target key.

Again, the α contacts nearest to the target are chosen

from the returned sets and the procedure is iterated un-

til no returned contact is closer to the target key than
previously known nodes. The result of the lookup is the

set of the k probed nodes nearest to the target key.

Contents retrieval is made by replacing the find

node with a find value RPC, which has the same se-
mantic but returns a set of contents if the queried node

has in its storage a resource marked with the lookup

key. Resources storing is made by invoking a store

RPC on the nodes found with a lookup. Bootstrap
is simply made by performing a lookup procedure for

the local NodeId, starting to query a bootstrap node,

whose contact is assumed to be known. The protocol

provides also a ping RPC for signaling purposes.

Nothing is assumed on the structure of node’s stor-

age but it has the semantic of a map from keys to con-

tents, provided with appropriate put and get primitives.

For further details on Kademlia specifications we
refer to [31].

3 Security threats and countermeasures

Opponents that we take into account are users that aim

to break off or degrade the DHT service or to exploit

the potential of the network to attack another peer or

a target service outside the DHT. We suppose that an
attacker is able to perform the following operations with

minimum computational effort:

– run a large number of node instances on the same

computer

– spoof its nodes’ NodeIds and network addresses

4

– intercept and alter the communication flow between

any two nodes

– conspire together with other malicious peers in order

to accomplish coordinate attacks

This broad freedom of action allows an attacker to

effectively put off a large spectrum of attacks against
every network’s structural element of any DHT. Next,

we classify and inspect the attacks categories that such

adversary can put off. Several classifications of DHT

attacks can be found in literature (e.g. [42,12,47]), and

many of them focus on the exploitation of arbitrary
NodeId assignment and on the routing procedure com-

promise. Our purpose is to consider a wider range of

attacks, including those against DHT storage function-

ality, and also Man In The Middle attack.

3.1 Attacks on DHTs

Sybil attack

In a structured P2P network, NodeIds are generated lo-

cally from each node instance, arbitrarily. As we stated
before, we suppose that a user can generate many node

instances on the same machine, with as many different

NodeIds. Multiple identities belonging to a single user

are called Sybils [17]. Such behavior is in itself harm-

ful because it undermines the redundancy property of
the DHT system. However, Sybils can be used by an

attacker to put off massive and organized attacks [30].

Assigning identifiers near to a target key to a sufficient

number of Sybil nodes, an attacker could be able to in-
tercept and discard most of the lookup requests for that

key, thus censoring the contents stored in the DHT for

that key.

Honest nodes can be distinguished from Sybils using

validation mechanisms based on cryptographic puzzles

[36], or exploiting assumptions on the underlying phys-

ical network (e.g. [48]) in order to identify nodes which
are instantiated at the same physical position. Several

ad-hoc protocols have been proposed in more recent

years; for example, in [4], each node is dynamically as-

sociated to a monitor node that moderates transactions

involving its twin node, thus making ineffective any
Sybil attack attempt. Another recent approach lever-

ages the acquaintance between human users to detect

the untrusted contacts established by Sybils [50]. A cen-

tralized access control service (e.g., [44]) could be a very
effective solution, but such architectures should avoid

single point of failures and grant high scalability to be

adopted.

Routing attacks

The routing table poisoning is the most commonly

documented routing attack. It consists in injecting ad-

hoc entries in the victim’s routing table to alter the cor-

rect message routing procedure. Doing so, an attacker
can disrupt the correct message flow or cut off groups

of nodes from the network (i.e. eclipse attack [41]).

Routing table poisoning comes out easily in a DHT

environment, because of the push-based approach in
routing information updating: since the routing table

is built and updated on the basis of unsolicited mes-

sages received from other peers (like neighbor nodes’

routing table publishing), an attacker could easily re-

place most of the entry victim’s routing table entries
with fake information. In particular, a node is prone to

poisoning attacks during its bootstrap phase, when a

very little information on the overlay is available. Sub-

verting the routing procedure by uncorrectly answering
to routing queries is a simpler, but sometimes effective,

attack called lookup misdirection).

The most common countermeasures to routing poi-

soning is putting constraints on NodeIds assignment
and routing procedure [12]: if a malicious node cannot

choose arbitrarily its identifier and he can insert only

its reference into a specific slot of the victim’s rout-

ing table, the index poisoning would be unfeasible in
practice. Ad-hoc distributed protocols for routing ta-

ble verification (e.g., [41]) or periodic resets of routing

tables aimed at flushing out poisoned entries [15] have

also been proposed.

Storage and DDoS attacks

A node is free to insert into the DHT any content bound

to arbitrary lookup keys, which are chosen at applica-

tion level. Attackers can disseminate contents report-
ing fake or harmful information. We talk about index

poisoning attack when bogus contents are deliber-

ately spread to the nodes responsible for those contents

lookup keys (the index nodes); this attack is partic-
ularly effective and notorious in P2P file sharing sys-

tems. If index poisoning is massively carried into effect,

the ratio between the number of fake and true contents

can soar, hiding the original contents from the lookup

process [35]. When contents are references to other re-
sources that are intentionally corrupted or fake we talk

about pollution attack [26], a index poisoning closely

related attack. Index poisoning is the main mean to

perform DDoS attacks [33]. Indeed, in content sharing
applications, for example, nodes publish in the DHT the

network addresses of content providers. If an attacker

spreads references to a very popular item, specifying a

5

target service as the source of that item, he/she will

cause the redirection of all the item requests to the vic-

tim, easily realizing a TCP flooding. So, solving the in-

dex poisoning problem in DHTs provides also a robust

shelter agains DDoS attacks.

Rating systems, based on resources or users [27],

or the exploitation of trust bonds established between
users in an external social network [18] can be used

to evaluate the quality of a content in order to detect

attempts of index poisoning. Ideally, one would like to

have a distributed reputation scheme that responds to
attempts to evade detection by changing identity. The

use of public-key schemes to mark contents has been

explored in file sharing context [28].

Man In The Middle attack

In our adversary model an attacker is able to overhear

and modify the content of messages flowing between
any two endpoints. This is a tangible occurrence in real

overlay networks, because of the use of buddies to man-

age the communication to nodes who reside behind a

firewall or a NAT service. A detailed description of how

buddy system works in the Kad DHT is given in [9],
while in [45] a crawling analysis of Kad network shows

that the portion of nodes behind a NAT or a firewall is

very significant.

To avoid Man In The Middle (MITM), a mutually

authenticated channel between the two communication

endpoints must be established and the integrity of ex-
changed data must be assured. MITM is related not

only to P2P systems but to every distributed service;

for this reason, many studies about MITM resistant

two-ways authentication protocols are available in liter-

ature. A detailed systematic design of families of MITM
resistant authentication protocols is available in [7]; we

refer to this document for further detail.

3.2 Applying countermeasures

The foregoing overview highlights the main instruments

that can be taken to develop a comprehensive defense

against cited attack categories. Specifically:

1. NodeIds must be generated randomly. The possi-

bility of arbitrary NodeId selection should not be
left to any node

2. The possibility for a user to generate many nodes

on a single machine must be severely restricted or

made as expensive as possible
3. The procedure for routing tables updating should

provide appropriate constraints. A peer should be

able to insert into a second peer’s routing table only

its own contact. The routing table in which its con-

tact is added should not be determined by the mes-

sage sender

4. During the bootstrap, the node must acquire rout-

ing information from trusted sources
5. A unique, strong user identity must be associated

to each node. This identity must be certified and

verifiable by other peers so that a system for the

evaluation of user behavior can be realized
6. The communication protocol between nodes must

be two-way authenticated and must ensure the in-

tegrity of messages

As we stated before, our attack analysis is quite gen-

eral because it does not take in consideration any detail

of a specific DHT. So, Kademlia protocol is included in

the previous security considerations. The following Sec-
tion describes the model of a DHT-based system that

is able to fulfill all the mentioned points.

3.3 Secure DHTs

In the following, an overview of some the most signifi-

cant approaches in making DHTs more secure and ro-

bust against adversarial behavior is carried.

Myrmic [49] is a enhancement of Chord [46] de-

signed to resist attacks against the routing procedure.

Myrmic adopts a “root verification protocol” that al-

lows to check that the responsibility function λ is cor-

rectly applied. This is accomplished by the combined
action of a trusted authority, which issues certificates

specifying the responsibility keyspace area for a node,

with a set of designed witness nodes, that checks that

the responsibility area is respected. The main draw-
backs of this approach can be seen in mainly three is-

sues. First, there are too many assumptions: an external

Certification Authority is used, loose synchronization

between nodes is needed and the impossibility of car-

rying Man In The Middle attacks is stated. Second, if
the Certification Service fails it will be not possible to

join again the system. Instead of this constraint, our

approach allows nodes to bootstrap even if the Certifi-

cation Service fails, except for the very first join. Third,
Myrmic does not face attacks against storage.

An approach very similar to Myrmic is adopted also

in NeighborhoodWatch DHT [6], where a third party

authority issues signed tokens to certify the responsi-
bility of a node on a keyspace subset; here loose peers’

clock synchronization is required.

S/Kademlia [5] is a secure Kademlia-based rout-
ing protocol, robust against common attacks. It lim-

its free NodeId generation by using crypto puzzles in

combination with public key cryptography. It extends

6

the Kademlia routing table by a sibling list and it re-

duces the complexity of the bucket splitting procedure.

Its lookup algorithm uses multiple disjoint paths to in-

crease the lookup success ratio. Finally, it allows the

DHT to store data in a safe replicated way to reduce
impact of attacks against the storage.

In [39] authors leverages on node identity assign-

ment procedure to reduce the impact of some dangerous

attacks. An ID assignment protocol based on identity-
based cryptography is presented, showing that the id-

based cryptography is a suitable and affordable tech-

nique that preserves scalability by introducing a slight

overhead. The described bootstrap procedure is accom-

plished through a weak authentication method (i.e.,
based on a callback to the presented IP address) that

has to be executed at each join.

For reasons of space, we cannot present a full over-

view of DHT security solutions, but a wider dissertation
on DHT security techniques can be found in [47]. In the

next Section, in parallel to the analysis of each attack,

we inspect some of the most relevant specific counter-

measures proposed in the past.

4 Architectural model

Likir, Layered Identity-based Kademlia-like InfRastruc-

ture, is the architectural model of a new DHT system
that offers both a very high protection level from all the

most common attacks against structured P2P networks

and a simple framework supporting identity-based ser-

vices. The means by which Likir reaches these goals is
the delegation of user’s identity management to the ov-

erlay network layer. Likir architecture is structured in

three main modules, shown in Figure 1.

Certification
Service

Reputation
System

Likir

Transport

Identity
Provider

LikirId

User

Web
portal

Kademlia

1

2

3
Applications

Fig. 1 Likir architectural model

The first is a user registration service, accessible via

Web, which returns to the user the certified identity

that will be used to mark its node on the overlay net-

work. The service is composed of a web portal, which

interacts with an Identity Provider for user’s identity
verification purposes and with a Certification Service

for the creation of the certified identity. The second is

a DHT protocol which extends the Kademlia protocol,

encapsulating it. This layer provides an essential set
of simple and general purpose API for developing any

kind of application. The third consists of a reputation

service at the same level of the applications layered on

Likir, which interacts both with the underlying DHT

node and with the various applications.
Next, we inspect all three modules, defining in de-

tail purposes, functions and interactions between them.

We made only a pair of assumptions, useful for the fol-

lowing discussion; we suppose that each user has a pair
of RSA keys and an OpenId account. Finally, we adopt

the following notation.

A, B : Likir users

NodeIdA : node A’s DHT identifier

UserIdA : A’s OpenId
K+

A , K−

A : A’s public and private key

Sig(msg, K−

A) : message signed with key K−

A

H(o) : hash code of the object o

ts : timestamp
a||b : concatenation of strings a and b

4.1 User registration service

In order to use Likir services, you must fulfill a user reg-

istration procedure; Likir architecture provides a web

portal for this purpose.

A generic user A is authenticated by the registra-

tion website using the OpenId protocol. This implies
that A sends its OpenId (the UserId) to the registra-

tion service, which in turn contact a third-party OpenId

provider, where A has a valid account, to validate the

user identity (a detailed description of the OpenId 2.0
framework is given in [34]). Once the UserId is vali-

dated, A sends its public key to the registration portal

through a simple submission form supplied on the web-

site. The OpenId and the public key are then forwarded

to a trusted entity, the Certification Service (CS). We
pass over the specific structure of the CS and we handle

it as a black box service, which peculiar function is cre-

ating signed identifiers for newly joining users; we only

suppose that it owns an RSA key pair
〈

K+

CS, K−

CS

〉

.
Upon A’s request, the CS binds A’s UserId to A’s

public key and to a random 160bit string that will rep-

resent the DHT identifier of the Likir node. The binding

7

is made through the production of a cryptographic to-

ken which is then sent to A through a secure channel:

LikirIdA = EK
−

CS

(NodeIdA||UserIdA||K
+

A ||tsexp)

CS keeps track of the association between UserIdA and

LikirIdA, to prevent subsequent requests from causing
the production of unnecessary signatures. Only when

LikirId’s validity is near to its expiration (determined

by tsexp) the CS must create a new LikirId.

When user registration procedure is successfully ter-

minated, A can instantiate its own Likir node just sup-

plying the LikirIdA, its key pair and the CS’s public
key, that we suppose to be publicly available on the

registration portal.

Observation: It is very important to notice that,

once a user has obtained his LikirId, he does not need

to contact CS until his signed ID validity expires. If the

CS fails, the user registration service becomes unavail-

able but the network activities are not affected, because
the users that previously obtained their LikirId can

join the overlay without querying any central service.

Since the tsexp can be chosen to last even many years,

we can state that the CS is not a real single point of
failure of the system.

Of course, the CS infrastructure and the mainte-
nance of the registration portal have a cost that have

to be sustained by some project promoter. Such infras-

tructural cost could be low enough to be set up also

by no-profit organizations like universities (realizing a

single-server PKI and a OpenId-compliant web service
is relatively cheap). However, also commercial promot-

ers could be interested into supporting the project be-

cause of the potential revenues from advertisements.

Since Likir can be exploited also as a platform for the
creation of a decentralized, privacy-aware online social

network (see Section 7), we believe that its potential at-

tractiveness to consumers could be high. An alternative

way to finance the registration service cost could be to

ask for a micropayment for each new LikirId issued.

4.2 Node interaction protocol

To join the Likir network, a node must just perform

the Kademlia bootstrap procedure, namely performing

a lookup for its own NodeId starting querying a live
bootstrap node. If the node is not aware of any alive

contact (e.g. it is performing its first bootstrap), he can

send a proper request directly to the CS, which re-

sponds with a signed bootstrap list. The CS controls at
least one alive Likir node which executes a periodical

probing task (simply performing lookups for random

NodeIds) in order to learn of fresh contacts. However,

NodeId , N1A

NodeId , N2B

LikirId , Auth ,A AB RPC-REQ

NodeA

End session

LikirId , Auth ,B BA RPC-RES
Check

Check

I

II

III

IV

NodeB

End session

Fig. 2 Likir node session

it is important that every node keeps track of a sub-

stantial number of previously known contacts to use

as bootstrap nodes, to avoid the CS to be flooded by
bootstrap list requests.

A node A can successfully send a Kademlia RPC

to a node B only if both A and B follow this four way

session.

I A → B : NodeIdA, N1

II B → A : NodeIdB, N2

III A → B : LikirIdA, AuthAB,rpc-req

IV B → A : LikirIdB, AuthBA,rpc-res

N1 and N2 are randomly generated nonces; rpc-

req and rpc-res fields are respectively the request and
response RPC defined in Kademlia. Messages sent at

steps I and II must be somehow marked differently (e.g.

distinct opcodes), to differentiate the request from the

response.

AuthAB and AuthBA are two authentication tokens
structured as follows:

AuthAB = Sig(NodeIdB||N2||H(rpc-req), K−

A)

AuthBA = Sig(NodeIdA||N1||H(rpc-res), K−

B)

Figure 2 shows the session message exchange. Steps I

and II just accomplish a preliminary nonce exchange.

Messages III and IV are thoroughly symmetric; the

Kademlia rpc is sent with the LikirId of the sender

and with a signed authentication token. The Auth con-
tains the addressee NodeId (to avoid replay attacks),

the previously received nonce (to assure the freshness

of the token) and the rpc hash (to protect rpc mes-

sage from modifications). We should observe that fresh-

ness of authenticators can be granted also replacing the
nonces with timestamps, avoiding the preliminary mes-

sage exchange; however this would require at least to as-

sume a loosely synchronization of nodes’ clocks. Later,

in Section 5, we show how this protocol assures authen-
ticity of messages.

The rpcs exchanged during the session follows ex-

actly the Kademlia rpcs specification, except for the

8

store rpc. In Likir, Kademlia store request message

is enhanced to prevent the disownment of the insertion

operation; it is structured as follows.

store rpc = k||content

content = Obj||Cred

Cred = Sig(UserIdA||k||H(Obj)||ts||tsexp, K
−

A)

The store rpc embeds a content and its lookup key.

The content is composed by the actual object, which
is application-specific, and by a signed credential Cred.

Cred token includes all the useful information on the

published object: its ownership (UserIdA), its lookup

key (k), its SHA-1 hash to grant its unalterability, the
publish time (ts) and its validity period (tsexp).

Content store and retrieve operations on the DHT

can easily built upon the defined primitives, according
to the Kademlia lookup protocol. We call put and get

such operations, respectively.

4.3 Reputation system

The last Likir module to be introduced is a Reputation
System (RS), placed at the application level, which in-

teracts both with the other applications and with the

underlying DHT node.

We do not define a specific Reputation System for

Likir, because different application suites could adopt

different systems, depending on their needs. Many RS

models could be suitable for Likir architecture even if
fully decentralized reputation systems like [43] or [23]

could better match with the pure P2P Likir design. A

wide overview of existing and proposed reputation and

trust systems models can be found in [22].

We make just a few loose assumptions on the RS be-

havior. We presume that the RS computes a reputation

score for each known peer on the basis of information

received by the applications or retrieved from the DHT;
we suppose that the RS exhibits a simple API that al-

lows the applications to evaluate other user’s behavior

in order to single out the misbehaving peers.

When an application retrieves a resource from the

DHT, it evaluates the genuineness of that content on

the basis of application-dependent rules. For example,

a method to assess the validity of a resource could be

the evaluation of the relationship between the resource’s
content and its lookup key; usually, every application

defines specific rules to bind lookup keys to objects (e.g.

key calculated with the hash of object’s metadata), so

if a resource was inserted with a lookup key that is
not related with its content, respect to the lookup key

production rules of that application, the resource can

be marked as invalid, and its publisher as a polluter.

When a polluted content inserted by a malicious

node X is retrieved, the application passes to the RS a

evidence of X ’s misbehavior:

evidenceX = UserIdX ||content||applicationID

The evidence contains the polluter’s UserId, the pol-
luted content and a string which identifies the applica-

tion that retrieved the content. Depending on its par-

ticular policies, the RS takes care of spreading the ev-

idences to other remote RS instances. When receiving
a new evidence from a remote peer, the RS pass it

to the application corresponding to applicationID (if

installed) in order to evaluate if the received item is

actually a polluted content.

Based on the number of the acquired evidences on

a user, the RS determines its reputation score; when
a user’s reputation score falls below a predetermined

threshold, the RS instructs the underlying Likir node

to add his UserId in a local blacklist. Note that, since

the content inside the evidenceX contains a Cred to-
ken signed by X , the ownership of the polluted item

is verifiable by any peer. This implies that a node can

always prove that a misbehaving peer have inserted a

polluted content and, symmetrically, a malicious user

cannot forge fake evidences for honest peers.

During a communication session, when the identity
of the other endpoint is learned (step III for server node,

step IV for client node), the blacklist is looked up; if the

identity appears in the blacklist the session is aborted,

thus preventing a considered malicious node to use net-
work services. If the contact of a node that is recognized

as a polluter is in the routing table of an honest node,

it cannot be erased immediately, because the routing

table retains only the information about the NodeIds

and not about the UserIds; besides, it will be wiped out
when the first session with the polluter is established,

when the binding between his UserId and NodeId is

verified.

If the RS design is effective and the reputation in-

formation is quickly and efficiently spread across the
network, a polluter peer is quickly excluded from Likir

service, because his UserId is added to many honest

nodes’ blacklist. An example of a simple RS scheme and

an emulative experiment on its effectiveness in banish-

ing malicious peers is given in Section 5.2.

It is worth noting that managing the blacklist at
middleware level allows to apply a strict exclusion pol-

icy towards misbehaving users; if a user takes a ma-

licious behavior within a specific application and its

bad reputation spreads across the network, he will no
longer be able to use any other application service, be-

cause the blacklist is shared between all Likir-layered

applications. This feature is advisable because a severe

9

punishment for polluters can be an effective deterrent

for intentional bad behaviors.

4.4 Replacing RSA with IBS

Likir protocol exploits conventional RSA cryptography

for token signatures, however, in agreement with the
identity-centered Likir design, an Identity Based Sig-

nature (IBS) approach could be adopted as well.

IBS is a cryptographic technique that allows to com-

pute a key pair whose public counterpart could be ob-

tained from an ASCII string. This cryptographic para-

digm allows a user to verify a signature of another user
just knowing his user ID. The original IBS idea, based

on the RSA function, was presented by Shamir [40], but

it was subsequently revisited by Boneh and Franklyn [8]

and Cocks [14], who used bilinear pairings [29] for effi-
cient Identity Based Cryptosystems (IBCs) design. The

presentation of IBS mathematical background goes be-

yond the goals of this work, however we give a brief

overview on how such paradigm works.

In IBS, when a user A wants to send a signed a mes-

sage to a user B, the following steps must be executed.

1. Setup: a trusted third party, the Private Key Gen-

erator (PKG), creates a pair of master keys : a pub-

lic key MK+ and a private counterpart MK−.
2. Extraction: A presents his identity (IdA) to the

PKG, who produces a private key K−

A from MK−

and IdA; the new key is then sent to A through a

secure channel

3. Generation: using its private key K−

A , A creates a
signature s on message m and sends (m, s) to B.

4. Verification: B checks whether s is a genuine sig-

nature on m using IdA and MK+.

Likir can profitably take advantage of an IBS scheme.

Since the UserId must be sent in every communication

session, the recipient of a request or response RPC al-

ways knows the sender’s user name, so, using IBS, the

Likir protocol overhead could be noticeably streamlined
because the information of the user’s public key in the

LikirId could be omitted, and the UserId only could

be used to verify tokens signatures.

Nevertheless, IBS has two main drawbacks. The first

concerns efficiency: the known IBS algorithms [19] in

current implementations (e.g. Stanford PBC Library1)
are slower than RSA, both in signature and in verifi-

cation phases. The second (the most severe) is the key

escrow property: the PKG is a genuine single point of

failure, because if an attacker takes possession of the
private master key, he could generate the private keys

1 http://crypto.stanford.edu/pbc

related to every UserId, thus violating the whole cryp-

tosystem.

For these reasons, the current Likir implementa-

tion adopts a traditional public key scheme. However,

the scientific community is still very active in IBC re-
search, therefore the possibility of replacing RSA with

IBS should be taken into account.

5 Security analysis

Likir contrasts the security menaces analyzed in Sec-

tion 3 with its three main architectural elements: the
enhanced node interaction protocol, the CS LikirIds

issue service, and the Reputation System. The first two

strongly mitigate the impact of the Sybil attack and

avoid the occurrence of routing poisoning or MITM at-
tacks, while the third reduces the effectiveness of the at-

tacks based on storage pollution. So, our security anal-

ysis is divided in two parts. First (Section 5.1), we show

the security properties of Likir protocol, then (Section

5.2) we present an emulative experiment that highlights
how the adoption of a RS (even a very simple one) can

quickly wipe out the polluter users from the network.

5.1 Secure communication channel

To show the Likir protocol effectiveness against poi-

soning, Sybil and MITM attacks we must proof two
properties.

Property 1 Node authentication. A node can com-

municate with others only providing its own LikirId

Proof Suppose an attacker node X who’s pretending to

be A during a session with node B. Clearly, since the

node session protocol requires to provide a valid proof of

the LikirId ownership (the Auth token), X cannot sim-
ply reuse the intercepted A’s LikirId to spoof its iden-

tity, but a valid couple of LikirId and Auth is needed.

X cannot produce a valid AuthAB itself, because

the AuthAB must be signed with the private counter-
part of the RSA key included in the LikirIdA, that is

assumed unforgeable because it is signed by the CS;

so, the entity that is able to produce a valid AuthAB

is A only. So, X has only two ways to counterfeit its

identity: to intercept and reply a valid AuthAB or to
trick A into produce a valid AuthAB.

In the first scenario, X must intercept an AuthAB

that contains the same Nonce received by B (at ses-

sion step I or II, depending if X is the session initiator
or not); but if Nonce’s size is big enough and a good

pseudo-random generator is used by Likir clients, the

probability that X can find such AuthAB is negligible.

10

In the second scenario, X must solicit A to build

an Auth containing the Nonce received by B. This can

be easily achieved by establishing a proper session with

A, but the token thus obtained would be an AuthAX ,

and not an AuthAB. To get a proper AuthAB, X must
pretend to be B during the session with A, but this

creates a cyclic dependency: to pretend to be A in a

session with B you must pretend to be B in a session

with A. ⊓⊔

Property 2 Message integrity. Every message flow

alteration attempt causes the session to abort

Proof If an attacker modifies the data at session steps

I or II, the Auth tokens sent in the following steps will

be no more valid, because they include all the fields

of the preliminary Nonce exchange messages. LikirIds
and AuthIds are unalterable by assumption because

they are signed; the same is for the RPC message, be-

cause its cryptographic hash is included into the Auth.

So, the message flow between two nodes is unalterable
by a third party. ⊓⊔

From Property 1 follows straight that NodeId can-

not be generated arbitrarily and cannot be spoofed. In
Kademlia a new routing table contact is added at the

end of a communication session, if there is enough room

in the proper bucket. Since the overlay communication

is authenticated, the NodeId are randomly chosen and

cannot be spoofed, and the position of the new contact
in the routing table is determined locally on the basis

of the sender’s NodeId, an attacker cannot insert an

arbitrary contact in an arbitrary position of the rout-

ing table. So, any routing table poisoning based attack
is practically unfeasible.

Property 1, combined with Kademlia design, pre-

vents also lookup misdirections. The nodes considered

during the lookup process must be directly probed;

since the node responsibility function depends only on
the NodeId and since the NodeIds cannot be spoofed,

the initiator knows for sure what key responsibility area

he’s addressing to. Of course, denial of service (e.g. a

node replies to a lookup query with valid contacts whose
NodeIds are not close to the target) is always possi-

ble, but this is an inherent problem of the distributed

lookup mechanism; anyway, the Kademlia lookup pro-

cedure is pretty resistant to such attack because favors

the retrieved contacts that are nearest to the target.
As we stated in Section 2.2, at every lookup step, the α

nodes whose NodeIds are the closest to the target are

probed. If, during the process, a honest node is queried,

the k contacts returned will be likely closer to the target
than the contacts returned by other non-collaborative

nodes, so the next α nodes to be queried will be chosen

from this set (since, usually, α < k).

Protocol authentication and NodeId randomness li-

mit also the sybil attack impact. To run many different

nodes, as many LikirIds are needed, but if the user

subscription service provides valid techniques to avoid

the registration phase automation, the effort needed to
produce many sybils can be arbitrarily increased. For

example, during user subscription phase, a credit card

number can be required. Different identities could be

issued for the same user, but the CS can limit the
number of different LikirIds issued for the same credit

card number, thus making very expensive the hoard of

a huge number of identities. Anyway, even if an attacker

has many nodes under his control, he cannot position

them in specific key space areas, because the NodeIds
randomness.

Finally, proof of Property 1, together with Property
2, shows the protocol resistance to MITM; furthermore,

the bootstrap list provided by the CS for the first boot-

strap is signed, thus partition attacks during the join

phase are avoided.

5.2 Banishment of polluters

We show the effectiveness of the Likir blacklisting fea-

ture, combined with the RS action, through an emu-

lative experiment. Each peer runs a Likir-layered test

application with a very simple behavior: broadly, the
peer periodically stores and retrieves contents from the

DHT on random lookup keys; we suppose that the ap-

plication is able to verify if a resource is polluted in a

fully automated way, without interacting with a human
user, so when a fake resource is retrieved, its publisher’s

UserId is immediately inserted into the blacklist.

Each application interacts with a Reputation Client
(RC), just notifying it when a new UserId is blacklisted

and providing the related evidence2. The RC stores a

evidence list in a local database.

The RC behavior follows a simple, zero-tolerance

gossip-based approach to spread local reputation in-

formation. Periodically, the evidence list is published

in the DHT using a lookup key which is easily obtain-
able from the publisher’s NodeId. Before the publishing

phase, the RC retrieves the lists of other users in order

to learn of new polluters’ UserIds and, possibly, to in-

crease its own list. To do so, the lists of the k known

NodeIds nearest to the local NodeId (the closest ov-
erlay neighbors) are retrieved from the DHT and the

local list is possibly updated with new UserIds.

To make our experiment easier, and to get time-

scale independent results, we organize the emulation

2 The RC design is just functional to our experiment, it is not
an element of the Likir architecture

11

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Steps

N
o

rm
al

iz
ed

 b
ad

 o
u

t
d

eg
re

e
D

p=0.2

p=0.4

p=0.8

Fig. 3 Reputation test results

into time steps. At each step, every peer on the net-

work performs a variable number of DHT operations;

we refer to Nput and Nget respectively as the random

variables of the number of store and retrieve operations
executed and we suppose that these variables are nor-

mally distributed.The lookup keys specified as put and

get parameters are selected from a set of 105 randomly

generated 160-bit keys; accordingly to previous studies
on P2P contents popularity distribution on file shar-

ing networks [21], we suppose that the frequencies of

such keys are distributed accordingly to a Zipf’s law;

we choose an exponent equal to 1. When a step is over,

the RC gossip service is activated and new blacklisted
contacts are possibly learned.

The network is, of course, partitioned into two sub-

sets: the Good and the Bad peers. The bad nodes are

distinguished from others because they publish only

fake contents and they do not take part in the RS ac-
tivities. At each step, the bad out degree (D) of good

nodes is measured. D is simply defined as follows:

D = | {(x, y) |x ∈ Good ∧ y ∈ Bad} |

A link between a good and a bad node (the (x, y) edge)

is determined by the presence of the bad node’s contact

into the good node’s routing table; the percentage of
bad nodes is given by the p parameter.

We instantiate a 150 nodes network and then we run

our emulation for different values of p. We set Kademlia

routing parameters k and α to tiny values (respectively

to 4 and 2) because the network size is relatively small.

Our experiment is aimed to model a coordinated pol-
lution attack, so we suppose that attacker nodes start

polluting the DHT at step 0, and no new node is instan-

tiated during the emulation period. Of course, during

the whole overlay network life, several attacks like this
can happen, however we focus only on a snapshot of a

single attack which anyway easily allows to understand

the effectiveness of Likir blacklist and RS.

The results are shown in Figure 3; the plotted values

of D are normalized on the initial D value. In an ini-

tial phase, before fake contents are widely spread across

the network, the number of bad contacts in the good

peer’s routing tables increases, because new contacts
are learned due to the lookup procedures executed by

the nodes of each partition. But the diagram shows that

this trend is reversed after the first step; the value of

D is reduced to about one fifth in just three or four
synchronization steps, for every value of p, and then

decreases asymptotically to zero, thus cutting off the

cluster of bad nodes from the healthy part of the net-

work.

The blacklisting method results effective also for
very high values of p (e.g. p = 0.8) because, even there

is a slight probability that a non-polluter node has the

contact of another honest node in its closest overlay

neighbors set, a great portion of contents on the DHT
results corrupt, so many evil nodes are discovered at

each step.

6 Performance evaluation

Compared to Kademlia, the Likir protocol introduces

an overhead that affects both the number and the size of

messages exchanged between nodes; besides, the cryp-

tographic effort spent during a node session due to the

signature operations increases the computational load
on every single peer.

In order to quantitatively evaluate the performance

decay due to additional messages, enlarged message size

and cryptographic overhead, we opted for a test in a
real, large-scale distributed environment. We run small

Likir and Kademlia overlay nets on PlanetLab network,

in order to compare the time effort needed for put and

get primitives in both protocols and to measure the av-

erage impact of cryptographic operations on the whole
Likir session time.

The reader should note that a scalability test is not

needed here, for three reasons mainly. First, we do not

modify the Kademlia routing protocol neither its rout-
ing table management policy; thus, the number of hops

for a lookup operation in Likir is exactly the same as

in Kademlia. Second, the number of messages sent dur-

ing a Likir session is incremented by a constant num-

ber, compared to a Kademlia session; this implies that
the number of messages per lookup still grows logarith-

mically with the network size, like in Kademlia. Last,

the cryptographic operations impact on the nodes that

perform RSA checks and signatures but clearly do not
burden the network with any additional traffic.

For these reasons, Likir has by design the same scal-

ability properties that have been shown for Kademlia.

12

Element Size LikirId Auth Cred

NodeId 20 • •
DHTkey 20 •
UserId 128 • •

K+ 128 •
Signature 128 • • •

Nonce 16 •
Hash 20 • •

ts 8 • ••

Total size: 412 184 312

Table 1 Crypto token size (bytes)

RPC Request Response

ping
596 596

find-node

find-value 596 596 + 312 · n

store 908 596

Table 2 RPC spatial overhead (bytes)

Of course, the time needed for a lookup operation is

greater in Likir if compared to Kademlia, so we want to

quantify this gap in a real network environment. Prior
to this, we present also a static analysis on the message

size overhead and on the cryptographic primitives cost.

6.1 Spatial and cryptographic overhead

The size of a Likir message is greater than the size of

ordinary Kademlia RPC due to the addition of LikirId,
Auth and Cred tokens. In Table 1 the whole set of

elements that composes these tokens is shown, together

with their size; furthermore, the specific composition of

each signed tokens is given, together with their total
size. We suppose that 1024 RSA keys are used.

Once crypto token size is assessed, we can easily cal-

culate the size overhead on each Kademlia RPC. Every

RPC contains at least a LikirId and and Auth, which

form the message header. In addition to this, the store

RPC request contains also a Cred bound to the con-

tent to be stored, and the find-value RPC response

payload contains a Cred attached to every content re-

turned to the querier. Of course, the number of con-
tents per find-value response is variable due to the

availability of objects bound to the requested key. For

this reason, the overhead for such RPC can change. To

seize this variability, we define n as a variable repre-

senting the number of Cred per find-value response.
Table 2 summarizes the given considerations, showing

the overhead for every RPC. It is worth noting that the

additional header size is smaller than 1KB in the worst

case, and the find-value payload dimension overhead
is linear with the number of retrieved contents.

The node interaction protocol (Section 4.2) requires

also that both sender and receiver generate and ver-

RPC Sender Receiver

ping
gen + 2 · check

gen + 2 · check
find-node

find-value gen + (n + 2) · check

store 2 · gen + 2 · check

Table 3 Cryptographic primitives used in each RPC

ify signatures; for the sake of brevity, we refer to gen

and check respectively for a signature generation and

a signature verification. Table 3 summarizes the num-

ber of cryptographic primitives to be performed by a

node during a whole session, for every RPC. We delib-
erately ignore the SHA-1 hashing operations due to the

non-influential cost. The n additional checks reported

to find-value RPC client side represent the Cred ver-

ification of all retrieved contents. The impact of such

primitives on the RPC session time is discussed in the
next Section.

6.2 Network emulation

We built a Kademlia implementation simply by replac-

ing the Likir node interaction protocol with the classic

Kademlia protocol on our Likir Java implementation;

the Kademlia parameters k and α we chose are respec-
tively equal to 4 and 2.

We bootstrapped 250 overlay nodes on as many

PlanetLab nodes; we used the support of a centralized

server for bootstrap lists distribution, as described in

Section 4.2. Then, each Likir node executed 25 put and
25 get, randomly interleaved, on random keys. The se-

quence of called primitives followed a Poisson process;

the temporal distance between two events was deter-

mined by an exponential distributed random variable.
The same experiment was made for the Kademlia con-

figuration.

We measured the whole execution time of each put

and get. The cumulative distribution function of these

times is depicted in Figure 4. We observe that, in both
plots, the relationship between the two curves is differ-

ent depending on the time range taken into account.

In a first interval, from 0 to the value highlighted with

the arrow, the Kademlia curve assumes values that are

more than double than the Likir curve; in the second
interval, up to infinity, the curves get asymptotically

closer. This happens because in short lookup proce-

dures the cost of Likir cryptographic operations as-

sumes a non-neglegible weight respect to the overall
put/get time, while in the second range the network

delay prevails on the time spent in signatures genera-

tions and checks.

13

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

C
u
m

u
la

ti
v
e

p
ro

b
ab

il
it

y

GET

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Time (s)

PUT

Likir

Kademlia

Fig. 4 CDF of get and put times in the PlanetLab experiment

Operation
Likir Kademlia

E µ 1

2

σ E µ 1

2

σ

get 2291 1366 2930 1276 659 2402

put 3877 2408 4123 1844 1091 2626

Table 4 Likir session duration (milliseconds) for both put and
get in the PlanetLab experiment

As expected, put requests are slower than get be-
cause they require an additional hop to command the

found index nodes to store the content. We measured

that the mean lookup hop number is 2, so the number

of step required is 2 for the get and 3 for the put.

To give a more precise estimation on the overhead

introduced by Likir we need some statistics (presented

in Table 4). We notice that the put and get mean
and median time in Likir are roughly double respect to

the same primitives executed with the Kademlia pro-

tocol. The standard deviation assumes always high val-

ues because the huge network latency variability and
the different number of hops of the lookup processes.

This is the result we expected, since in a Likir session

four messages must be exchanged, compared with the

two messages of a Kademlia session. This suggest that,

on average case, the cryptographic overhead has a little
impact on the overall time.

To give a more precise estimation of the impact of
checks and signatures on the session time, we measured

the mean time for gen and check operations on a Plan-

etLab node. Since we know the lookup hops mean, the

average number n of retrieved content in a get oper-

ation (we calculated n = 4) the number of primitives
needed in put and get for each hop (Table 3), and the

mean time needed for cryptographic operations, an es-

timation of the mean time spent on the local node for

cryptographic primitives can be easily done. We calcu-
lated an overhead of about 172 ms for get and 347

ms for put. These values are less then one tenth of the

total operation time, and, however, they even do not

impact in full on the total put and get time because

of the parallel nature of the lookup process.

In conclusion, the network emulation results shows

that the predominant Likir overhead is given by the
additional message exchange, that necessarily doubles,

on average, the basic DHT operations execution time.

7 Building P2P social applications

The great popularity of Online Social Networks (OSNs)

has supplied Social Network Service (SNS) providers

(e.g. Facebook, MySpace, Flickr) with a large amount
of user data. Indeed, the centralized structure of such

services allows providers to easily collect user’s contents

and to mine information about user social behavior.

The possession and the consequent (and often unavoid-

able) exploitation of these data raises evident concerns
on user privacy and on the right to use the data.

An interesting architectural solution to this problem

comes from the peer-to-peer community. In fact, build-

ing a SNS over a pure P2P layer avoids the interference
of a centralized control on information exchanged and

possibly stored in the network [10]. Encryption can pro-

tect sensitive and private data from malicious crawling

activities.

A recent research line have expanded this insights
proposing decentralized frameworks suitable for SNSs

[11,16,1], however, many design aspects should be ex-

plored further. In this context, Likir is an ideal plat-

form for SNSs mainly for two reasons. First, the security

level offered by its protocol grants a very high robust-
ness to the modules above, which is very important for

this kind of applications. Second, Likir’s identity sup-

port better matches the SNSs’ requirements rather than

any other DHT, because it implicitly links data belong-
ing to different applications with its embedded identity

notion. For these reasons, in this Section we present

Likir API showing how they can be profitably used

14

in a identity-based OSN context. Anyway, Likir is a

general-purpose framework and its security advantages

are appreciable by any kind of application, even those

without a strong identity notion (e.g. more “classical”

file sharing or distributed storage applications). Fur-
ther considerations on possible customizations of Likir

for SNSs adaptation can be found in [3].

7.1 Likir API

The Likir’s interface to the application offers a very

simple and essential set of primitives. We denote the

node N of a user userId as NuserId and we suppose

that key is an identifier of the keyspace.

1. bootstrap(): join the local node to an existing

Likir network by contacting previously known peers

as bootstrap nodes. If no peer is known, send a

proper request to the CS to gain a fresh bootstrap

list
2. put(key, obj, type, ttl): lookup index nodes for key

and ask them to save the binding between key and

obj in their storage; type is an application-specific

string while ttl is the time after which the binding
might be eliminated from the storages. Returns the

number of successfully queried nodes

3. get(key, type, userId, recent): lookup index nodes

for key and query them for object binded to key.

type, userId and recent are optional filtering param-
eters that can use to require only contents of a cer-

tain type, submitted by userId, or only the most

recent versions of the content. Returns the set of

contents found (possibly empty)
4. blacklist(userId): add userId to the local black-

list; every future session established with NuserId

will be aborted

In the following, we refer to put and get also to
denote the messages (RPCs) originated by the corre-

sponding API call.

Very sharp resource retrieval can be made through

the index side filtering facility. If all get parameters
are set, at most one resource is returned (i.e. the last

resource inserted by the specified user, under the spec-

ified key and type). Obviously, identity-based resource

filtering could be achieved simply tagging the stored re-

source with a label that specifies the owner identifier.
However, such method is vulnerable to storage poison-

ing attacks, therefore it cannot grant the resource own-

ership. On the contrary, Likir protocol assures verifia-

bility through certificates.
We realized a Java implementation of Likir3. It fol-

lows faithfully the Kademlia specification except for the

3 Likir library is available at http://likir.di.unito.it

Algorithm 1: LiCal events management

Node n = new Node (UserIdA)1

n.bootstrap ()2

Object CalendarA = createUsrEvents (...)3

String weekID = getCurrentWeekID ()4

Int replicas = put (UserIdA|| weekID, CalendarA, “Cal”,5

defaultTS)
List <Object > res = get (UserIdB|| weekID, “Cal”,6

UserIdB, true)

node interaction protocol, for the addition of a nested-
map data structure which implements the content stor-

age and for the management of the blacklist.

7.2 Applicative case studies

Modern Online Social Networks are increasingly ori-

ented toward cooperation and integration of different

services. All the most popular OSNs are designed to
host a customizable set of modules (e.g., Facebook ap-

plications) and are often adapted to interact with other

OSNs (e.g. integration between Twitter and LinkedIn).

A P2P storing and retrieval layer like a DHT is a very
good decentralized framework to support this model,

because, in principle, each application can access to any

published resource, which implies a maximum integra-

tion potential.

However, in order that this potential could be prof-
itably exploited, applications should be able to easily

gather the correct information which constitutes the

public profile of a user. To give a practical demonstra-

tion on how Likir API allows this task and to show how
Likir primitives are easy to use, we consider two simple

demonstrative applications.

First, we consider LiCal (Likir Calendar), a client

that allows a user to publish her commitments and to

consult the public events of her friends. Algorithm 1
shows that few code lines must be executed to startup

a node (lines 1,2), publish user A’s weekly arranged

events (lines 3-5) and to consult her friend B’s public

events (line 6). We omit details about events’ struc-
ture and we suppose to deal with a time interval of one

week, even if of course different time granularities can

be chosen.

Quite differently to DHT-based file sharing clients

(e.g. eMule), when the calendar client queries the DHT
it is not interested in receiving a huge amount of re-

sults. If the weekly events of a known friend are looked

up, only a specific entry, inserted by a definite iden-

tity is wanted; moreover, only the last calendar update
is sought. Setting all the get filtering parameters each

index node return only one content (its most recent ver-

sion), so the DHT data retrieval can be realized with

15

Algorithm 2: LiCha bootstrap

Object OptionsA = get (UserIdA||“options”, “LiCha”,1

UserIdA, true)
Int replicas = put (UserIdA||“contact”, contact, “LiCha”,2

defaultTS)
Object friend3

for contactk in options.buddylist do4

friend = get (UserIdK ||“contact”, “LiCha”,5

UserIdK , true)

friendEvents = get (UserIdK || weekID, “Cal”,6

UserIdK , true)

an accuracy that is uncommon for classic DHT services
and the application is relieved of any filtering task. This

possibility is very handy to social network applications,

which often need to access to data updates made by a

single user (e.g. user status modification).

Even if quite embryonic, LiCal represents an ex-

ample of a straightforward identity-based application.

It shows how, in principle, synchronization problems

afflicting ordinary calendar manager systems, can be

solved using a reliable DHT approach. In fact, a LiCal
client can be interfaced with a commonly used calendar

client (e.g., Apple iCal, Microsoft Eudora), in order to

access our data from different machines without a cen-

tralized provider (e.g., Google, Plaxo), and maintain-
ing the control of events’ confidentiality and privacy

through a possible encryption.

As a second demonstrative example, we introduce

LiCha (Likir Chat) that is a more mature social net-
working application we developed4 using the Likir API.

LiCha is a instant messaging client whose architecture

is fully decentralized; the conventional central server

that, in classic chat clients, retains all user’s informa-

tion is replaced with the DHT.

Two kind of contents are managed: the user options,

containing the buddylist and other local user prefer-

ences, and the client contact, that is trivially a TCP

socket address of the chat service and a status spec-
ification (offline/online). Algorithm 2 shows how (en-

crypted) local options are retrieved from the DHT (line

1) and how the client network contact is published (line

2). Friends’ contacts are then retrieved (lines 3-5). Fi-
nally, the LiCha client pings each online friend to inform

them of its status. When LiCha clients exchange con-

tacts each others, they can simply start chat sessions

without involving the Likir layer.

LiCal and LiCha can be profitably integrated. For

example, the LiCha buddylist can be enriched display-

ing the daily events of those users that are also LiCal

users. Such feature can be achieved with a single code

line (line 6), supposing that the rules to build the cor-

4 http://likir.di.unito.it/applications

rect LiCal lookup key are known. This basic example

shows how any cross-application integration can be im-

plemented in Likir; knowing the UserId of a friend and

the correct lookup keys production rules, a generic mod-

ule can easily retrieve public information related to any
other Likir application used by that friend.

8 Conclusions

Vulnerability to attacks suffered by overlay networks is

a strong obstacle to the development of critical applica-

tions on DHTs. We designed an identity-aware version

of Kademlia that offers an effective defense against a

wide range of attacks, with a limited overhead. Even
if a registration service is introduced, our architecture

does not present a single point of failure, because the

Certification Service is contacted only during the user

subscription phase, through a simple web service. Fur-
thermore, the presence of a web portal that every user

is constrained to visit at least once can become a good

point of aggregation for developers’ products. If all the

applications are listed in a website, the user can choose

to install all the modules he likes in order to gain a cus-
tomized application suite, like in popular services like

iGoogle, whose applications are however managed in

accordance with a client-server paradigm. If the pres-

ence of a centralized authority must be avoided, the CS
could be easily replaced by efficient distributed PKI in-

frastructures like [25].

We showed how embedding identity at overlay level

can be exploited also beyond security purposes. De-

velopers can leverage the identity support to imple-
ment P2P reputation management systems and to build

customizable applications suites that benefits identity

sharing to collaborate each other. Furthermore, enhan-

ced index side filtering functionalities allows to sharpen
the data retrieval operation. Safe identity based data re-

trieval allows mash-ups between different applications

through a very simple API.

Such features make Likir an ideal framework for

P2P Social Networking Systems. In this context, Likir
represents a point of contact between previous works on

DHT security issues, that mainly focused on attacks,

and the new trend in using pure P2P layers as privacy-

aware frameworks for Online Social Networks, that of-

ten neglects security aspects laying at routing level.

The implementation of the Likir Java library, to-

gether with case studies and experimental results give

credit to the feasibility of our proposal.

16

Acknowledgments

This work was produced in part within the “TeTraCo”

project, with support of MIUR (“Progetti di ricerca e

formazione ai sensi dell’art.13 del D.M. 593/00 - Dis-

tretto ICT Piemontese”).

We would like to thank the anonymous reviewers

for their precious suggestions, that have been useful to

improve the paper. A special thank to Mark Lillibridge,

HP Senior Research Scientist, who gave us useful sug-
gestions during the Eight International Conference on

P2P Computing, Aachen 2008.

References

1. Abbas, S., Pouwelse, J., Epema, D., Sips, H.: A gossip-based
distributed social networking system. In: WETICE’09: 18th
IEEE International Workshops on Enabling Technologies.
Groningen, Netherlands, pp. 93–98. IEEE Computer Society
(June 29 - July 1, 2009)

2. Aiello, L.M., Milanesio, M., Ruffo, G., Schifanella, R.: Tem-
pering Kademlia with a robust identity based system. In:
P2P ’08: Proceedings of the 2008 Eighth International
Conference on Peer-to-Peer Computing, pp. 30–39. IEEE
Computer Society, Washington, DC, USA (2008). DOI
http://dx.doi.org/10.1109/P2P.2008.40

3. Aiello, L.M., Ruffo, G.: Secure and flexible framework for de-
centralized social network services. In: SESOC ’10: Security
and Social Networking Workshop, pp. 594–599. IEEE Com-
puter Society (2010)

4. Dharanipragada Janakiram, J.: SyMon: Defending large
structured p2p systems against sybil attack. In: P2P ’09:
Proceedings of the 2009 Ninth International Conference on
Peer-to-Peer Computing. IEEE Computer Society, Seattle,
WA, USA (2009)

5. Baumgart, I., Mies, S.: S/Kademlia: A Practicable Approach
Towards Secure Key-Based Routing. In: Proc. of P2P-NVE
2007 in conjunction with ICPADS 2007, Hsinchu, Taiwan,
vol. 2 (2007). DOI 10.1109/ICPADS.2007.4447808

6. Bender, A., Sherwood, R., Monner, D., Goergen, N., Spring,
N., Bhattacharjee, B.: Fighting spam with the Neighbor-

hoodWatch DHT. In: INFOCOM (2009)

7. Bird, R., Gopal, I., Herzberg, A., Janson, P., Kutten, S.,
Molva, R., Yung, M.: Systematic design of a family of attack-
resistant authentication protocols. Tech. rep., IBM Raleigh,
Watson and Zurich Laboratories (April 1992)

8. Boneh, D., Franklin, M.: Identity-Based Encryption from the
Weil Pairing. SIAM J. Comput. 32(3), 586–615 (2003). DOI
http://dx.doi.org/10.1137/S0097539701398521

9. Brunner, R.: A performance evaluation of the kad protocol.
Master’s thesis, Institut Eurecom (2006)

10. Buchegger, S., Datta, A.: A Case for P2P Infrastructure
for Social Networks - Opportunities and Challenges. In:
WONS’09: 6th International Conference on Wireless On-
demand Network Systems and Services. Snowbird, Utah,
USA (2009)

11. Buchegger, S., Schiöberg, D., Vu, L.H., Datta, A.: PeerSoN:
P2P Social Networking - Early Experiences and Insights. In:
SNS’09: 2nd ACM Workshop on Social Network Systems So-
cial Network Systems. Nürnberg, Germany (2009)

12. Castro, M., Druschel, P., Ganesh, A., Rowstron, A., Wal-
lach, D.S.: Secure routing for structured peer-to-peer ov-
erlay networks. In: OSDI ’02: Proceedings of the 5th sym-

posium on Operating systems design and implementation,
pp. 299–314. ACM, New York, NY, USA (2002). DOI
http://doi.acm.org/10.1145/1060289.1060317

13. Cheng, B.N., Yuksel, M., Kalyanaraman, S.: Virtual direc-
tion routing for overlay networks. In: P2P ’09: Proceed-
ings of the 2009 Ninth International Conference on Peer-to-
Peer Computing. IEEE Computer Society, Seattle, WA, USA
(2009)

14. Cocks, C.: An Identity Based Encryption Scheme Based on
Quadratic Residues. In: Proc. of the 8th IMA Int. Conf.
on Cryptography and Coding, pp. 360–363. Springer-Verlag,
London, UK (2001)

15. Condie, T., Kacholia, V., Sankararaman, S., Hellerstein,
J.M., Maniatis, P.: Induced churn as shelter from routing-
table poisoning. In: Proc. of NDSS 2006, San Diego, Califor-
nia, USA (2006)

16. Cutillo, L.A., Molva, R., Strufe, T.: Leveraging social links
for trust and privacy in networks. In: INet Sec 2009. Open
Research Problems in Network Security. Zurich, Switzerland
(2009)

17. Douceur, J.: The sybil attack. In: Proc. of the 1st Interna-
tional Workshop on Peer-to-Peer Systems (IPTPS) (2002)

18. Ennan, Z., Ruichuan, C., Zhuhua, C., Long, Z., Huiping, S.,
Eng, K.L., Sihan, Q., Liyong, T., Zhong, C.: Virtual direction
routing for overlay networks. In: P2P ’09: Proceedings of the

2009 Ninth International Conference on Peer-to-Peer Com-
puting. IEEE Computer Society, Seattle, WA, USA (2009)

19. Gangishetti, R., Gorantla, M.C., A.Saxena: A survey on ID-
based cryptographic primitives. cryptology eprint archive, re-
port2005/094 (2005)

20. Guerraoui, R., Huguenin, K., Kermarrec, A.M., Monod, M.:
On Tracking Freeriders in Gossip Protocols. In: P2P ’09:
Proceedings of the 2009 Ninth International Conference on
Peer-to-Peer Computing. IEEE Computer Society, Seattle,
WA, USA (2009)

21. Iamnitchi, A., Ripeanu, M., Foster, I.: Small world file shar-
ing communities. In: InfoCom ’04: Proceedings of the 23rd
Conference of the IEEE Communications Society (2004).
URL http://citeseer.ist.psu.edu/iamnitchi04smallworld.html

22. Josang, A., Ismail, R., Boyd, C.: A survey of trust and repu-
tation systems for online service provision. Decision Support
Systems 43(2), 618–644 (2007)

23. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The eigen-
trust algorithm for reputation management in p2p networks.
In: WWW ’03: Proceedings of the 12th international confer-
ence on World Wide Web, pp. 640–651. ACM, New York,
NY, USA (2003)

24. Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton,
P., Geels, D., Gummadi, R., Rhea, S., Weatherspoon, H.,
Weimer, W., Wells, C., Zhao, B.: Oceanstore: An architecture

for global-scale persistent storage. pp. 190–201 (2000)

25. Lesueur, F., Me, L., Viet Triem Tong, V.: An efficient dis-
tributed pki for structured p2p networks. In: P2P ’09: Pro-
ceedings of the 2009 Ninth International Conference on Peer-
to-Peer Computing. IEEE Computer Society, Seattle, WA,
USA (2009)

26. Liang, J., Kumar, R., Xi, Y., Ross, K.: Pollution in p2p file
sharing systems. In: INFOCOM 2005. 24th Annual Joint
Conference of the IEEE Computer and Communications So-
cieties. Proceedings IEEE, pp. 1174–1185 (2005)

27. Liang, J., Naoumov, N., Ross, K.W.: The index poisoning
attack in p2p file sharing systems. In: INFOCOM (2006)

17

28. Lou, X., Hwang, K.: Prevention of index-poisoning DDoS
attacks in peer-to-peer file-sharing networks (2006). Submit-
ted to IEEE Trans. on Multimedia, Special Issue on Content

Storage and Delivery in P2P Networks
29. Lynn, B.: On the implementation of pairing-based cryptosys-

tems. Ph.D. thesis, Stanford University (2007)
30. Maccari, L., Rosi, M., Fantacci, R., Chisci, L., Milanesio,

M., Aiello, L.M.: Avoiding eclipse attacks on Kad/Kademlia:
an identity based approach. In: ICC 2009 Communication
and Information Systems Security Symposium, to appear.
Dresden, Germany (2009)

31. Maymounkov, P., Mazières, D.: Kademlia: A peer-to-peer in-
formation system based on the XOR metric. In: IPTPS 2002,
pp. 53–65 (2002)

32. Mislove, A., Post, A., Reis, C., Willmann, P., Druschel, P.,
Wallach, D.S., Bonnaire, X., Sens, P., Busca, J.M., Arantes-
Bezerra, L.: POST: a secure, resilient, cooperative messaging
system. In: HOTOS’03: Proceedings of the 9th conference

on Hot Topics in Operating Systems, pp. 11–11. USENIX
Association, Berkeley, CA, USA (2003)

33. Naoumov, N., Ross, K.: Exploiting p2p systems for DDoS
attacks. In: InfoScale ’06: Proceedings of the 1st international
conference on scalable information systems, p. 47. ACM, New
York, NY, USA (2006)

34. Recordon, D., Reed, D.: Openid 2.0: a platform for user-
centric identity management. In: DIM ’06: Proceedings
of the second ACM workshop on Digital identity manage-
ment, pp. 11–16. ACM, New York, NY, USA (2006). DOI
http://doi.acm.org/10.1145/1179529.1179532

35. Ross, K., Liang, J., Naoumov, N.: Efficient blacklisting and
pollution-level estimation in p2p file-sharing systems. In:
Proc. of Asian Internet Engineering Conference (2005)

36. Rowaihy, H., Enck, W., McDaniel, P., Porta, T.L.: Limiting
sybil attacks in structured peer-to-peer networks. Tech. Rep.
NAS-TR-0017-2005, Network and Security Research Center,
Department of Computer Science and Engineering, Pennsyl-
vania State University, University Park, PA, USA (2005)

37. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer sys-
tems. LNCS 2218, 329–351 (2001)

38. Rowstron, A., Kermarrec, A.M., Castro, M., Druschel, P.:
Scribe: The design of a large-scale event notification infras-
tructure. In: Proc. of the Third International Workshop on
Networked Group Communication (NGC 2001), pp. 30–43
(2001)

39. Ryu, S., Butler, K., Traynor, P., McDaniel, P.: Leveraging
identity-based cryptography for node id assignment in struc-
tured p2p systems. In: Proc. of AINAW ’07, pp. 519–524.
IEEE Computer Society, Washington, DC, USA (2007). DOI
http://dx.doi.org/10.1109/AINAW.2007.221

40. Shamir, A.: Identity based cryptosystems and signature
schemes. In: CRYPTO 84: Proceedings of Advances in cryp-
tology, pp. 47–53. Springer-Verlag New York, New York, NY,
USA (1985)

41. Singh, A., Ngan, T.W., Druschel, P., Wallach, D.: Eclipse at-
tacks on overlays: Threats and defenses. In: Proc. of the 25th
IEEE InfoCom 2006. IEEE Computer Society, Barcelona,
Spanien (2006)

42. Sit, E., Morris, R.: Security considerations for peer-to-peer
distributed hash tables. In: IPTPS ’01: Revised Papers from
the First International Workshop on Peer-to-Peer Systems,
pp. 261–269. Springer-Verlag, London, UK (2002)

43. Srivatsa, M., Xiong, L., Liu, L.: TrustGuard: countering
vulnerabilities in reputation management for decentralized
overlay networks. In: WWW ’05: 14th international con-
ference on World Wide Web, pp. 422–431 (2005). DOI
http://doi.acm.org/10.1145/1060745.1060808

44. Steiner, M., En-Najjary, T., Biersack, E.W.: Exploiting
KAD: possible uses and misuses. SIGCOMM Computer
Communications Review 37(5), 65–70 (2007)

45. Steiner, M., En-Najjary, T., Biersack, E.W.: A global view
of KAD. In: IMC ’07: Proc. of the 7th ACM SIGCOMM,
pp. 117–122. ACM, New York, NY, USA (2007). DOI
http://doi.acm.org/10.1145/1298306.1298323

46. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Bal-
akrishnan, H.: Chord: A scalable peer-to-peer lookup ser-
vice for internet applications. In: SIGCOMM ’01: Proceed-
ings of the 2001 conference on Applications, technologies,
architectures, and protocols for computer communications,
pp. 149–160. ACM, New York, NY, USA (2001). DOI
http://doi.acm.org/10.1145/383059.383071

47. Urdaneta, G., Pierre, G., Van Steen, M.: A survey of
DHT security techniques. ACM Computing Surveys (2009).
http://www.globule.org/publi/SDST acmcs2009.html

48. Wang, H., Zhu, Y., Hu, Y.: An efficient and secure peer-to-
peer overlay network. In: LCN ’05: Proceedings of the The
IEEE Conference on Local Computer Networks, pp. 764–
771. IEEE Computer Society, Washington, DC, USA (2005).
DOI http://dx.doi.org/10.1109/LCN.2005.27

49. Wang, P., Osipkov, I., Hopper, N., Kim, Y.: Myrmic: Secure
and robust dht routing. Tech. rep., DTC Research (2006)

50. Yu, H., Gibbons, P.B., Kaminsky, M., Xiao, F.: Sybillimit:
A near-optimal social network defense against sybil attacks.
In: Security and Privacy, 2008. SP 2008. IEEE Symposium
on, pp. 3–17 (2008)

