
Contents lists available at ScienceDirect

Int. J. Human–Computer Studies

journal homepage: www.elsevier.com/locate/ijhcs

Incentivizing social media users for mobile crowdsourcing

Panagiota Micholiaa,⁎, Merkouris Karaliopoulosa, Iordanis Koutsopoulosa, Luca Maria Aielloc,
Gianmarco De Francisci Moralesb, Daniele Querciac

a University of Economics and Business, 76, Patission Str., GR10434 Athens, Greece
b Qatar Computing Research Institute, Tornado Tower, 18th floor, Doha, Qatar
c Nokia Bell Labs, Broers Building, 21 JJ Thomson Avenue, Cambridge CB30FA, UK

A R T I C L E I N F O

Keywords:
Mobile crowdsourcing
Flickr
Incentives

A B S T R A C T

We focus on the problem of contributor-task matching in mobile crowd-sourcing. The idea is to identify existing
social media users who possess domain expertise (e.g., photography) and incentivize them to perform some
tasks (e.g., take quality pictures). To this end, we propose a framework that extracts the potential contributors'
expertise based on their social media activity and determines incentives for them within the constraint of a
budget. This framework does so by preferentially targeting contributors who are likely to offer quality content.
We evaluate our framework on Flickr data for the entire city of Barcelona and show that it ensures high levels of
task quality and wide geographic coverage, all without compromising fairness.

1. Introduction

The computing power of mobile phones nowadays allows notifica-
tions to be sent to users on the fly, and thus labour and services can
now be supplied in real time. This is made possible by the rise of mobile
crowd-sourcing sites. We focus on the problem of contributor-task
matching on those sites.

The main idea is that there are many social media users – especially
power users – who passionately contribute to existing online commu-
nities and, as a result, become experts in specific areas but their talent
remains untapped. Hence, there is a need for mechanisms to engage
those experts in crowd-sourcing tasks.

To this end, we need to (1) identify experts from, e.g., their social
media activity, and we do so by borrowing ideas from previous work
such as Amintoosi and Kanhere (2014) and Kosinski et al. (2010); and
(2) incentivize them, and we do so by identifying those who are likely to
enjoy the tasks at hand, i.e., their preferences closely match the tasks.

We propose to align what social media users already do (e.g., take
and post pictures on Flickr) with what a mobile crowd-sourcing
marketplace demands (e.g., take pictures of local cafes and restau-
rants). In so doing, we make two main contributions:

• After formally describing the problem and the metrics involved
(Section 2), we devise a solution for it (Section 3). We propose a
framework based on a water filling algorithm in the context of
mobile crowd-sourcing.

• We evaluate our proposal against real traces of Flickr users in the
entire city of Barcelona (Section 4). We find that our proposal
ensures high levels of quality for the completed crowdsourcing tasks
and enjoys a wide geographic coverage of the city. Also, its
effectiveness does not come at the expense of fairness.

2. Describing social media users

Our problem involves three main actors: task suppliers, the service
provider (SP), and a set of task contributors ( ). The suppliers offer a
pool of tasks ( ), each of which comes with a budget. The service
provider matches those tasks with potential contributors that are both
knowledgeable and willing to carry those tasks out. To that end, the
service provider should:
Problem. : Identify and incentivize a set of contributors in a way that
the suppliers' satisfaction is maximized.

To see the practical relevance of this problem, consider a photo-
sharing site such as Flickr. Flickr users are passionate about photo-
graphy and share their work online. Pictures differ in quality, and those
of high quality tend to be liked and further shared by other users on the
site. One could imagine a situation in which Flickr users might be
willing to take pictures of their city's local businesses (e.g., cafes, shops,
and restaurants) under the right incentives. In this case, the goal of the
service provider is to best manage the budget provided by a local
business to incentivize and recruit the best Flickr users.

http://dx.doi.org/10.1016/j.ijhcs.2016.09.007
Received 24 February 2016; Received in revised form 15 August 2016; Accepted 13 September 2016

⁎ Corresponding author.
E-mail addresses: panamixo@aueb.gr (P. Micholia), mkaralio@aueb.gr (M. Karaliopoulos), jordan@aueb.gr (I. Koutsopoulos), luca.aiello@nokia.com (L.M. Aiello),

gdfm@acm.org (G.D.F. Morales), quercia@cantab.net (D. Quercia).

Int. J. Human–Computer Studies xx (xxxx) xxxx–xxxx

1071-5819/ © 2016 Elsevier Ltd. All rights reserved.
Available online xxxx

Please cite this article as: Micholia, P., Int. J. Human–Computer Studies (2016), http://dx.doi.org/10.1016/j.ijhcs.2016.09.007

http://www.sciencedirect.com/science/journal/10715819
http://www.elsevier.com/locate/ijhcs
http://dx.doi.org/10.1016/j.ijhcs.2016.09.007
http://dx.doi.org/10.1016/j.ijhcs.2016.09.007
http://dx.doi.org/10.1016/j.ijhcs.2016.09.007


2.1. Identifying and characterizing contributors

The best contributors for a task are identified depending on their
skills and willingness to carry out the task. In what follows, we detail
how we quantify these two user attributes. The ideal mechanism should
combine the two main types of incentive in the literature: intrinsic
motivation (you do something because you find it fun) and extrinsic
one (you do something because you get paid for it). Our incentive
scheme preferentially targets contributors who would not necessarily
visit a place but might well offer quality content for it. This scheme is
simple yet powerful, in that it mixes intrinsic motivation (pleasure for
the task) with extrinsic one (monetary gain). Explanations for all the
symbols that follow can be found in (Table 1).

Skilled contributor: A contributor's skill depends on how likely her/
his contributions will meet the expertise required by the task. In Flickr,
this expertise consists in taking high quality pictures. More generally,
in social media, we assume that one's expertise is reflected by the
number of likes one's content has received. In previous work
(Schifanella et al., 2015), it has been shown that there is a correlation
between quality and popularity in Flickr pictures (rank correlation 0.4).
So liked pictures are generally of quality. However, quality and likes do
not go always together. That has been shown to be true for pictures that
are not liked at all: those pictures can be either of questionable quality
(more likely) or of decent quality (less likely). By combining those two
considerations, one sees that the set of quality pictures consists of
pictures with many likes and pictures with a few likes or none. In a
conservative fashion, we assume that only pictures with many likes are
of quality. Thus contributor i's quality becomes:
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where fi is the number of positive feedback that contributor i has
collected overall (e.g., i's number of likes), ci is the total number of i's
contributions (e.g., i's number of pictures), and is the set of all
contributors. The ratio at the denominator normalizes qi in the interval
[0, 1].

The aggregate quality of a task j depends on the qualities of all i's
contributors. Based on the context, this dependency could be:

• Either linear, leading to a quality score for task j

∑Q q=j
i

i
∈ j (1)

where j is the set of task j's contributors;

• or of diminishing returns:

∏Q q= 1 − (1 − )j
i

i
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Willing contributor: In addition to being able to carry out a task, a
contributor should also be willing to do it. This depends not only on
whether the contributor is active on the site at all but also on whether
the task is of interest.

• Contributor's activity: i's activity is the i's total number of contribu-
tions ci normalized by the most active contributor
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where cai is the number of i's contributions that belong to category
a ∈ . For instance, in Flickr, these categories are reflected by photo
tags such as “food” and “arts”. We made the choice of representing user
interests as a vector of categories because previous work showed that,
from very simple information such as Facebook likes, one can even
predict personality traits (Kosinski et al., 2013). That might be
worrying because of privacy concerns. However, our way of gathering
user interests is far more coarse-grained than the information that is
already publicly available on social media profiles. Consequently, our
approach ends up being more privacy-conscious than what existing
social media sites tend to be.

Upon activity and interest, we could compute willingness. One way
of doing so is out of the activity and interest measures:
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However, this formula assumes that a contributor's willingness
scales linearly with the type and quantity of contributions. In reality,
willingness is subject to diminishing returns: the willingness of a
contributor who has taken one picture and that of a contributor who
has taken ten pictures are likely to differ less than ten times. As such,
we could define the willingness of contributor i to perform task j as:

w a e( ) = 1 −ij ij
α− ij (3)

This definition has three main desirable properties: (i) it ranges in [0, 1]
so that it can be treated as a probability; (ii) it is monotonic with
respect to αij, i.e., the higher the attractiveness of a task to a
contributor, the higher their willingness to carry it out; and (iii) it
shows diminishing returns.

Yet, again, this new formula assumes that we do not pay con-
tributors. To model the effect of payment on a contributor's willingness
function, we incorporate pij into (3) and have:

( ) ( )w α p e, = 1 −ij ij ij
γ α γ p− +i

α
ij i

p
ij
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The two non-negative parameters γi
α and γpi weigh the effect of

payment pij against αij. They should reflect the social media commu-
nity at hand: it should reflect how sensitive to payments the commu-
nity's members generally tend to be. Payments may be either monetary,
vouchers, or coupons to be redeemed from the task supplier (e.g., free
coffee and discounts on the admission fee).

3. Task assignment and budget allocation framework

A task can be assigned to one or more contributors. Given that the

Table 1.
Table of symbols.

i ∈ Contributor

j ∈ Task

qi Quality of contributor i
Qj Quality score of task j

j Contributors to task j

ei Activity of contributor i
fi Number of positive feedbacks received by contributor i
ci Number of contributions by i

Set of tasks' thematic categories
cai Number of contributions by i in thematic area a
gi
a Interest of contributor i to thematic area a

SP Service provider

Bj Budget for task j
αij Attractiveness of task j for contributor i
pij Payment offered to contributor i for task j
wij Willingness of contributor i to perform task j
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budget is limited, a payment allocation strategy is needed to select the
set of contributors that maximizes the overall task quality. This joint
task and budget allocation problem is presented here under two
scenarios. In the oracle (offline) scenario, the service provider SP
knows exactly when and where the potentials contributors are available
at any point in time. In Section 3.1, we formalize the oracle scenario as
an optimization problem and describe a numerical method for its
solution. In the live (online) scenario, SP knows only those who are
currently available. In Section 3.2, we present a heuristic approach to
solve the live scenario.

3.1. The oracle scenario

In the oracle scenario, since we know where contributors are and
when they are available, we set out to solve a global optimization
problem. The objective is to allocate the budget Bj to a subset of
contributors ⊆j . When a payment for a task is offered, the
contributor's willingness to do that task increases (as per Formula
(4)). The expected return of giving payment pij to contributor i can thus
be expressed as i's quality multiplied by i's willingness to complete the
task.
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p x B j
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where xij is a binary variable that is 1, if task j is assigned to i;
otherwise, it is 0. To make the maximization problem tractable, we do
not maximize over all the contributors but only over a selected
number. This selection follows either of two assignment rules. After
selecting all contributors within geographical reach, task j is assigned
to contributor i: (1) if j is the best matching task based on i's interests1

(interest-based); or (2) if j is the geographically closest task (proxi-
mity-based).

Once the restricted set of contributors j is determined for each
task j, the optimal budget distribution is computed, as we shall detail
next.

3.1.1. Task assignment and budget allocation problem
The next goal is to allocate payments. We do so through the

following optimization:
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This optimization maximizes the expected returns from the pay-
ments and can be viewed as an instance of the broader family of
Generalized Assignment Problems (GAP) (see, for example, Martello
and Toth, 1990, Chapter 7). The additive objective function in (P1) is
separable and can be written as | | different summands to be
maximized independently, one for each task. Hence, the original
optimization problem can be rewritten as | | independent discrete
problems of the form (P2):
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Algorithm 1. Water filling algorithm for task j.

one for each task j ∈ . From (P2) we compute pij considering that
the convex minimization problem with linear constraints can be solved
using the Karush–Kuhn–Tucker (KKT) first-order necessary conditions
for the existence of a local optimum (Avriel, 2003). Since the objective
function is convex, the local optimum is also a global one. The
application of KKT (see Appendix A for the detailed derivation) yields
the following expression for pij:
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where λj is the Lagrange multiplier for the single equality constraint in
(P2). The direct closed-form computation of pij and λj is not possible
since it is not known which instances of pij are zeros and which ones
are positive. However, their values can be computed numerically by
applying the so-called water filling algorithm (Palomar and Fonollosa,
2005). Initially, the algorithm sorts all contributors in increasing order
of water level defined as:

wl i γ p γ α γ q( ) = = − ln( )i
p

ij i
α

ij i
p

i (6)

The payments, which are initialized to zero, are then increased in
successive rounds. In the first round, the payment is offered to the
contributor with the minimum level. In the n'th round, payments are
offered to n contributors such that their levels will reach the n th( + 1)′
minimum level. The algorithm stops when the budget is exhausted.
After termination, the value of water level wl for all contributors who
receive an offer is equal to λ−ln . The procedure is described in detail in
Algorithm 1 and schematically represented in Fig. 1.

3.2. The live scenario

As opposed to the oracle scenario, in the live scenario, we do not
know where contributors are and when they are available; hence,
therefore a global optimization problem cannot be formulated. Every
time a contributor becomes available, we make K offers to the
contributor and (s)he needs to decide whether to take one of them.
Since an offer consists of a task and a corresponding payment, we need
to assign the task and then determine the payments.

3.2.1. Task-to-contributor assignment
We offer the K tasks in three different ways. In addition to the

interest-based and proximity-based strategies defined in Section 3.1,
we add a help-the-weakest strategy. This rule accounts for each task's
current status, that is, its residual budget, residual time, and its current
task quality score Qj(t). It works by making offers, at a given time t, for

1 i's interests are reflected by w α γ( , 0), = 1ij ij i
α in Formula (4). The 0 expresses the fact

that in the selection of contributors there is no payment.
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the K tasks with the lowest quality scores.

3.2.2. Payment determination
The payment is a function of the contributor's willingness and

intrinsic ability. The intrinsic ability is fixed, while the payment and
willingness can be changed. To change them, we need to estimate them.
We cannot estimate the willingness, so we set it to a desired target
value and determine the corresponding payment each time. Such a
value should match the provider's ability of spending the residual
budget within the time left. That is, the more the residual budget and
the less the time left (the higher the ratio budget over time), the higher
the payment should be. Now, to see how this plays out over time,
consider the time between the campaign's start and its end. In this time
window, if one were to pay at a constant rate, this rate would be B T/j j.
However, since payments are not precisely constant, we need to make
adjustments over time depending on:

adj
B t T t

B T
=

( )/ ( )
/t

j j

j j (7)

If adj > 0t , then we have been paying up to time t more than the
constant rate would suggest. If it is lower, we have been paying less. To
converge to the constant rate, we need to set the target willingness as:

w t c q t c adj( ) = min((1 − ) ( ) + · , 1)trg i t (8)

where c balances the relative weight of the adjustment parameter. By
having those quantities into Eq. (4), we obtain the payment as:

p t
w t γ α

γ
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)ij

trg i
α

ij

i
p
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4. Experiments

The goal of our framework is to complete the tasks with the highest
quality whilst ensuring the fairest payment. That is, the goal is to
maximize both the suppliers' satisfaction and the contributors' pay-
ments. To ensure that our framework meets this goal, our evaluation
ought to answer four main questions:

• Which of the two ways of allocating the budget (waterfilling in the
oracle scenario vs. heuristic in the live scenario) results in a high
number of completed tasks with a high quality? (Section 4.4.2)

• If the contributors have the possibility of choosing between multiple
offers, does it impact the cumulative quality and the way budget is
spent? (Section 4.4.3)

• Which task-to-contributor assignment rule (proximity, interest, help
the weakest) is more effective? (Section 4.4.4)

• Does the quality depend on geographic density and task types?
(Section 4.4.5)

We test the performance of both the oracle and live methods with
three main indicators: quality score Qj (cumulative quality contributed
to the task), budget spent, and task coverage (fraction of tasks with
Q > 0j ). Next, we introduce some algorithmic baselines as comparison
references, the dataset we use for the evaluation, and the simulation
set-up. In Section 4.4, we discuss the simulation results and we answer
the four questions above.

4.1. Baselines for the payment allocation

In the oracle scenario, we compare our waterfilling algorithm
against two simple baselines.

No payment baseline: This reflects a situation in which there is no
incentive mechanism: contributors are not paid, and, when they
contribute, they do so purely because of their interests.

Fixed payment baseline: All contributors are paid the same fixed
amount, computed by equally dividing the task budget Bj to the set of
contributors Nj, i.e., p B N i N= /| |, ∀ ∈ij j j j.

4.2. Datasets

In our scenario, Flickr users are incentivized to take pictures of
various Foursquare venues in Barcelona.

Foursquare: We collect information from 14k+ Foursquare venues
in Barcelona, and categorize them into nine top-level categories (the set

in Section 2.1): Arts & Entertainment, College & Education, Food,
Nightlife, Outdoors & Recreation, Shops, Travel & Transport,
Professional & Other Places, and Residence.

Flickr: Out of the full set of the public geo-referenced Flickr
pictures, we select a random sample of 3.2M photos taken by 77k
distinct users within the bounding box of Barcelona in 2014. For each
picture, we collect the anonymized owner identifier, the free-text tags
attached to the photo by the owner, the timestamp noting when the
photo was taken, and its geographic coordinates. The 15M tags in our
set are then matched to the nine top-level Foursquare categories.

4.3. Simulation set-up

To evaluate our framework we resort to a data-driven agent-based
simulation. Agents are Flickr users who have taken geo-tagged pictures.
Each geo-tagged photo is mapped to a simulation event represented by
a tuple t u l〈 , , 〉, where t is the event's timestamp, u is the user, and l is
the location (i.e., geographic coordinates) of the photo. We coalesce
multiple time- and space-contiguous photos into a single event to avoid
counting a single upload of multiple shots multiple times. Starting from
our original datasets, after matching and filtering, we obtain a set of
1800 Flickr users who are involved in approximately 20k events. We
also do one-to-one mappings of 1000 (a representative number for our
user set) Foursquare venues to tasks around the city.

Upon each event, the simulator selects a subset of up to K pending
tasks within distance D from the contributor's i current location and
ranks them according to the task-to-contributor assignment rule. The
contributor parses the ordered list and considers sequentially the
offers, which include information about the venue that requests the
photo-shooting task, as well as the personalized payment that is meant
to serve as incentive. With probability wij, the contributor i executes
task j, the task satisfaction index Qj is increased by qi according to Eq.
(1), the task budget Bj is decreased by pij, and the contributor stops
parsing the list. Otherwise, with probability w1 − ij, the contributor
parses the next task in the ranked list. If the whole list is scanned
without selecting a task, the contributor does not contribute to any
task.

Unless otherwise stated, B B=j for all j ∈ and D = 1.5 km (which
conservatively represents ten times the typical block walking distance).
We run experiments with several combinations of the parameters γpi
and γi

α at the exponent of the willingness function. We plot results for

Fig. 1. Schematic description of the water filling algorithm for a task j. The bars' heights
reflect the initial water level, wl(i), of each contributor i. Lines of different colors
represent the successive increases of weighted payments γ pi

p
ij over different rounds of the

algorithm. Eventually, offers are made to all contributors, except for contributor 4.
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γ = 0.3i
p and γ = 1i

α , which ensure the exploration of adequate ranges
for wij and aij in our experiments.

4.4. Results

4.4.1. Parameter tuning for heuristic
We first find the value of parameter c in Eq. (8) that optimizes the

performance of the heuristic. In Fig. 2a, the achieved aggregate task
quality under all three assignment rules is maximized when c is in the
interval [0.5, 0.7]. At low c values, the initial offers tend to be too small,
contributors most often reject them and the offers grow only towards
the very end of the campaign, given the low budget consumption rate.
Conversely, for high c values, the difference in payments with the
contributor quality index qi is minimal, and the payments are no longer
directed towards the more skilled contributors. The task coverage
(Fig. 2b) is not very sensitive to c. Under the interest-based and help-
the-weakest assignment rules, the heuristic achieves full coverage
irrespective of the value of c.

4.4.2. Task quality across payment methods
Fig. 3a plots the overall achieved quality as a function of the

available task budget B in the oracle scenario (solved with waterfilling
or with the fixed-payment baseline) and in the live scenario (solved
with our heuristic approach, for different values of K).

In the absence of payments (B = 0), the quality results into a
minimum value that sets the common reference point for all the single-
offer (i.e., K = 1) curves. The introduction of incentives (B > 0) always
increases the aggregate quality but to different extents depending on
the budget allocation schemes. The single-offer heuristic positions itself
between the fixed payment baseline and the water filling scheme across
all budget values. The distribution of the task quality values across all

tasks in Fig. 3b (for B = 200) points to stochastic dominance relation-
ships between the three schemes. The attracted quality of contributions
under the waterfilling scheme stochastically dominates the heuristic,
which in turn stochastically dominates the fixed payment scheme.

In summary, when only a single offer is given, the oracle scenario
solved with waterfilling yields better overall quality than the live
scenario solved with the heuristic approach.

In Fig. 4, we compare all budget allocation schemes with respect to
the budget amount they spend for their achieved task quality. For small
budget values, which do not suffice to pay everybody, the water filling
algorithm focuses its payments to the most skilled contributors who are
not intrinsically motivated to contribute to a task. The algorithm makes
maximal use of budget B, hence its efficiency decreases for higher
values of B. Large payments are offered to a greater number of
contributors and the willingness of the contributors is subject to
diminishing returns with respect to payments. In this way, payment
diversity does not reflect the diversity in quality contributions and all
contributors will be highly rewarded. On the contrary, the heuristic sets
a strict upper limit to the offers made (wmax parameter in Eq. (8)),
which does not change as the budget B increases. Therefore, it avoids
the unnecessary high payments computed by the fixed payment base-
line. The same level of task quality is achieved with much lower budget.

4.4.3. Increasing the number of offers K
More offers per contributor increase the chances that the contri-

butor will eventually pick up one of them. Figs. 3a and b show that the
heuristic outperforms the waterfilling approach for K = 3. Hence, the
heuristic effectively overcomes all the main limitations of the oracle
waterfilling (need of complete information and intractability of the
problem for K > 1) and exhibits superior performance when combined
with multiple offers.

Fig. 2. Task (a) quality and (b) coverage obtained by the heuristic as a function of the reference value c for different assignment rules.

Fig. 3. (a) Task quality and (b) its distribution for different allocation algorithms, all following the proximity-based rule with B = 200.
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4.4.4. Task quality across assignment rules
Fig. 5a plots the achieved task quality as a function of K for all three

task assignment rules. The overall trend shows a diminishing return
property, as expected. The help-the-weakest rule achieves the best
score and saturates faster than the other two rules. It does so by
tapping into otherwise-underused task budgets and generating larger
offers on average, as can be seen from the markedly higher value of
spent budget in Fig. 5b. To assess the quality/budget tradeoff, we
measure the average budget spent per quality unit (Fig. 6). The
interest-based rule is the most efficient, since it aligns tasks to user
interests, and thus needs smaller payments to achieve the same level of
willingness. The help-the-weakest rule is instead the most expensive,
bearing the cost of the imposed fairness, that is reached by incentiviz-
ing contributors to tackle unpopular tasks.

4.4.5. Impact of geographic density and task types on task quality
We investigate how the task depends on the geographical density of

venues and the type of tasks.
Area density: The completion of task in low-density areas might be

challenging. To test that, we compute the distribution of contributor
density across all venues and classify them into four quartiles. Each
quartile denotes the 25% of contributor visits, with quartile Q1
including the bottom 25% of venues and Q4 being the top 25%.
Fig. 7a compares the three budget allocation algorithms and the no
payment baseline under the proximity-based assignment rule. Fig. 7b
compares all three task assignment rules when combined with the
heuristic. In both figures, we report the actual achieved task quality in
each quartile normalized by the maximum achievable one had all offers
made to the contributors been accepted.

All three budget allocation schemes appear to achieve higher scores

of normalized quality in the lower three quartiles than in the top one
(Q4). That is, all schemes tend to take advantage of almost every single
contribution opportunity for tasks where opportunities are scarce,
while they are less effective for the top-25% of venues. In the most
visited venues, the task budget is split over more contributors,
payments tend to be lower and result greater number of rejected
offers. Fig. 7a also implies that the performance differentiation of the
three budget allocation schemes, as earlier reported in Fig. 3a, is due to
the way they treat the top-quartile venues. Note that in the absence of
incentives, there is not much difference among the quartiles, so the
differences highlighted above can be entirely attributed to the
budget allocation algorithms.

We observe a similar pattern for the heuristic in Fig. 7b. The
proximity- and interest-based task assignment rules yield lower scores
for tasks at the top quartile. The help-the-weakest rule, on the contrary,
distributes the quality values more uniformly across the four quartiles.

Task category: Certain types of task might not attract contributors.
In our dataset, we observe a mismatch between the interests of the
contributors and the available tasks (see Table 2). Whereas Flickr users
are mostly keen on taking pictures outdoors in parks, the Foursquare
venues fall predominately under the categories Shops, Professional &
Other Places, and Food. We explore how much the alternative schemes
for task assignment and budget distribution resolve this mismatch.

In Fig. 8a, we plot the task quality attracted for each category under
the proximity-based assignment rule. In line with intuition, the three
categories with the top scores are Shops, Professional & Other Places,
and Food. The contributors, hence, are directed to venues of the most
popular Foursquare categories. All budget allocation schemes only
amplify a difference that is already present even without any incentives.
The trend is reversed under the interest-based rule, as shown in
Fig. 8b. Irrespective of the payment allocation algorithm, contributors

Fig. 4. Budget spent as a function of the available budget per task.

Fig. 5. (a) Task quality and (b) budget spent, for the heuristic as a function of the number of offers K under the three task assignment rules with B = 200.

Fig. 6. Budget spent per quality unit achieved for the heuristic under all task assignment
rules with B = 200.
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follow their interests, as expressed in Flickr, and mainly carry out tasks
in the top Outdoors & Recreation category, followed by Arts &
Entertainment and Travel & Transport. As a result, the contributions
are concentrated on the few venues that are of interest to the
contributors, while the majority of the venues partly suffer. Clearly,

the interest-based rule is not the recommended option when the
interests of the contributors do not match the theme of the available
tasks. Finally, the help-the-weakest assignment rule follows the trend
of the proximity-based one, achieving higher task quality for the three
most frequent venue categories. Given that the help-the-weakest rule
almost always dominates the proximity one, and the achieved quality is
more evenly distributed among the available tasks (see Fig. 8c), we
consider it to be the best choice overall.

5. Related work

5.1. From online to offline crowdsourcing

Online crowdsourcing has been used in a wide range of domains
(Little, 2009; Kittur et al., 2011; Irani et al., 2013), including natural
language processing (Callison-Burch, 2009; Bernstein et al., 2010),
annotation of images (Rashtchian et al., 2010), and evaluation of
creativity for multimedia content (Schifanella et al., 2015). There are
still challenges to be addressed though, not least on how to formulate a

Fig. 7. Normalized task quality in areas of different contributor density (a) for different payment allocation algorithms under the proximity-based rule, (b) for the heuristic under all task
assignment rules for K=1 and B = 200.

Table 2.
Distribution of Flickr user interests over Foursquare categories and percentage of tasks in
each thematic category.

Categories User interests (%) Tasks (%)

Arts & Entertainment 8.64 4.80
College & Education 0.17 4.70
Food 0.78 20.80
Nightlife Spot 0.06 6.10
Outdoors & Recreation 83.49 5.20
Professional & Other Places 0.17 23.80
Residence 0.00 0.90
Shop & Service 0.55 26.10
Travel & Transport 6.15 7.60

Fig. 8. Quality scores for tasks of different thematic categories under the (a) proximity-based rule, (b) interest-based rule and (c) all the task assignment rules, for K = 1 and B = 200.
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task (Kittur et al., 2008; Mason and Suri, 2012), how to select crowd-
workers (Mashhadi and Capra, 2011), and how to assess the quality of
crowdsourced works (Hsueh et al., 2009).

As opposed to online crowdsourcing, situated crowdsourcing deals
with tasks that need to be executed offline (in situ) (Hosio et al., 2014).
It has been applied to the estimation of queue size (Goncalves et al.,
2015), the grading of exams (Heimerl et al., 2012), opinion polling
(Hosio et al., 2015), and the gathering of collective emotions
(Goncalves et al., 2014).

A number of mobile crowdsourcing platforms have emerged
recently (e.g., TaskRabbit, GigWalk, and OpenStreetMap), and re-
search in the area has followed (Goodchild, 2007; Sheppard et al.,
2014; Teodoro et al., 2014). Many of those systems suffer from low
geographic coverage (Haklay, 2010; Quattrone et al., 2014) and uneven
spatial distribution of contributions (Mashhadi et al., 2013; Teodoro
et al., 2014).

5.2. Task-to-crowdworker assignment

One of the initial steps in crowdsourcing is to assign tasks to crowd-
workers. Several strategies to do so have been recently proposed. The
assumption is often that a central authority with global knowledge
coordinates the assignment. Under that assumption, Kazemi and
Shahabi (2012) maximized the number of assigned tasks; Li et al.
(2015) minimized the cost of crowd-workers; Ho et al. (2013) matched
the maximum number of tasks crowd-workers are willing to perform;
and Shirani-Mehr et al. (2009) broke the assignment into two steps: in
the first step, the set of points in the city is selected, and, in the second
step, the selected points are assigned to users (users submit informa-
tion to the platform about their starting point, destination and
maximum available time to spend, and the platform assigns users to
the optimal paths).

Another way of assigning tasks is to account for the abilities and
skills of crowd-workers. Reddy et al. (2010) proposed a recruitment
framework to identify skilled users. The selection of users is done based
on their past whereabouts and availability. In a similar way, our work
has used the number of positive feedbacks (i.e., picture favourites) to
identify skilled contributors. This is a conservative choice. To see why,
consider that previous work (Schifanella et al., 2015) has found not
only that, as one would expect, quality and popularity in Flickr pictures
are correlated on average (rank correlation 0.4), but also that pictures
with many favourites were of quality. Nothing could be said about
pictures with no favourite: they were of high quality as much as of low
quality. Therefore, considering only the contributors with a consider-
able number of favourites is a conservative approach.

5.3. Incentive allocation

After assigning tasks to crowd-workers, those workers need to be
incentivized somehow to carry out those tasks (Restuccia et al., 2015).
Under the assumption of a centralized platform, traditional auction

models have been applied to mobile crowdsourcing (Lee and Hoh,
2010; Jaimes et al., 2012; Luo et al., 2014), in which workers bid for
their prices. Then, as a further incentive, Peng et al. (2015) proposed to
pay workers depending on the estimated quality of their contributions.

There are a few works that combine those two steps: task-to-
crowdworker assignment, and incentive allocation. In Gao et al.
(2015)'s work, the platform selects a set of workers, and those workers
are compensated based on a Lyapunov based VGC auction policy. In He
et al. (2014)'s proposal, instead, the service provider selects a set of
workers based on estimated quality and willingness to travel, and those
workers bargain their compensation with the platform.

Our work has proposed a new framework that combines task-to-
crowdworker assignment and incentive allocation, and it does so to
optimally allocate tasks while ensuring high geographic coverage and
high task quality.

6. Conclusion

We have proposed a framework that incentivizes social media users
to perform mobile crowdsourcing tasks. First, user information is
extracted from publicly available social media profiles. Then, this
information guides the assignment of tasks to users who, in turn,
receive monetary incentives to complete the tasks. Algorithms for the
assignments of tasks and payments are proposed under different
application scenarios, i.e., with or without complete spatio-temporal
information about potential contributors, with take-it-or-leave-it offers
or offers with multiple alternatives. Upon real datasets, our evaluation
has shown that, compared to schemes unaware of user skills, those
algorithms significantly enhance contribution quality.

There are several ways this work could be extended. First, one could
explore alternative ways of modeling the likelihoods that workers will
complete their tasks. For example, tasks could be broken down into
attributes, and those likelihoods will depend on the extent to which the
composing attributes match each user's needs (Karaliopoulos et al.,
2012). Second, one could explore additional objective functions. Ours
maximized the aggregate expected quality and, as such, is a “social
welfare” type of function; alternatively, one could minimize payments
to workers given some quality guarantees. Finally, one could produce
further quantitative results about the applicability of our framework to
platforms other than Flickr. In theory, any platform that comes with
quality scores related to geo-referenced contributions could be fit for
purpose. In practice, we expect that geographically salient (e.g.,
Facebook Places) and hyper-local platforms (e.g., TripAdvisor) might
lend themselves to our analyses more than what generic online
platforms (e.g., Twitter) might do.
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A.1. Derivation of payments under the water filling algorithm (5)

If λ is the Lagrange multiplier for the equality constraint in (5) and μ i N, = 1, …,i are the KKT multipliers for the inequality constraints, the
Lagrangian function is written as

⎛
⎝
⎜⎜
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with λ ≥ 0 and μ ≥ 0i .
The first-order necessary KKT conditions for the existence of an optimum require that, for every i:
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and

μ p = 0.i ij (A.3)

Solving for μi, we get:

μ λ qγ e= − .i j i i
p γ a γ p−( + )i

α
ij i

p
ij (A.4)

Eq. (A.3) implies three possible combinations of the values of pij and μi, which leads to as many possible cases for Eq. (A.4):

1. p > 0ij and μ = 0i . This implies that
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Since p > 0ij , it also holds that λ qγ e<j i i
p γ a− i

α
ij.

2. p = 0ij and μ > 0i . This implies λ qγ e>j i i
p γ a− i

α
ij.

3. λ qγ e=j i i
p γ a− i

α
ij. In that case, replacing in (A.3), we obtain that p = 0ij .

The combination of those three cases yields the formulation in (5).
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