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ABSTRACT
This tutorial introduces the audience to the latest breakthroughs in
the area of interpreting unstructured content through an analysis
of the key enabling scientific results along with their real-world
applications. With technical presentations of problems like named-
entity disambiguation and dynamically updating the knowledge
hierarchy with domain-specific vocabulary, it would provide the
fundamentals to the building-blocks of various applications in Arti-
ficial Intelligence, Natural Language Processing, Machine Learning,
and Data Mining.

CCS CONCEPTS
• Information systems → Data extraction and integration; On-
tologies; Information extraction; Information systems applications;
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1 INTRODUCTION
Future Big Data systems are expected to showcase enriched cogni-
tive abilities for data and pattern discovery for large-scale analytics
on vast amounts of linked structured and unstructured multi-modal
data. This would usher in the next-generation functionalities for
e-commerce, transportation, IoT and smarter health-care.

However, progress in the area of data science lies at the con-
fluence of semantic search, reasoning, knowledge representation,
algorithm engineering, natural language processing and machine
learning. To this end, the proposed tutorial will provide the audi-
ence with the latest breakthroughs and state-of-the-art techniques
for knowledge discovery and their organization for applications like
semantic linking and contextual interpretation. We further present
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how linked knowledge hierarchies can be compared on both struc-
tural and semantic subsumption similarities. Further, such cognitive
blocks should be highly accurate and scalable, depicting just-in-time
prediction and computationally cheap updates.

As a real-world manifestation, we discuss the application of tech-
niques to novel analytical avenues like: (1) analyzing “sound maps”
of urban areas to extract relationship between soundscapes, emo-
tions and perceptions; (2) creation of dictionary for urban smell to
analyze how different categories (e.g., industry, transport) correlate
with air quality; and (3) retrieving topically related multimedia
content segments for faster ingestion of information.

Finally, as food for thought, the tutorial will also highlight future
directions of work and various open challenges.

Keywords: Linked Knowledge Hierarchies, Entity Linking, Word
Embeddings, Graph Measures, Katz Centrality, Topic Labeling

Tutorial Outline
The tutorial would impress the importance of structure knowledge
hierarchy and enable the attendees to gain an insight as to how
a taxonomy can be mined from unstructured or semi-structured
corpus of text using co-occurrence graphs, statistical methods and
hierarchical clustering methods. The detailed outline is as follows:

(1) Introduction – Semantic Linking, Knowledge Repositories,
and Linked Data discovery

– Ontologies and Knowledge Hierarchies
– RDF structure and Linked Data
– Taxonomy structure: Directed Acyclic Graphs
– TF-IDF, LDA [3], classifiers [6], word embeddings [13]

(2) Application areas that leverage taxonomies
– Semantic relationship and Topical relatedness
– Community detection in social media

(3) Efficiency trade-offs
– Semantic interpretation
– Accuracy and Scalability
– Just-in-time prediction
– Fast updates

(4) Dynamically updating taxonomies
– Induction of taxonomies [1, 7]
– Breaking cycles in noisy hierarchies [15]
– Evolution of new concepts and word senses
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– Named entity linking for existing concepts [4, 11]
– Measures to capture new concepts

(5) Unsupervised placement of new concepts in taxonomies
– Rule based techniques
– Probabilistic approaches

(6) Supervised placement of new concepts in taxonomies
– Syntactic Features
– Semantic Features
– Graph Features
– Integrating features using learning-to-rank [12]
– Discussion of efficiency trade-offs
– Identifying Wikipedia categories for emerging concepts

(7) Efficient comparison of taxonomies
– Structural overlap measures
– Tree-edit distance [2] and graph similaritymeasures [10]
– Fowlkes-Mallows measure [5]
– Katz similarity scores [9] and their aggregation
– Discussion of efficiency trade-offs

(8) Domain-specific taxonomies for smarter applications
– Assigning human-readable topical tags to documents [8]
– Linking related multi-media contents
– Taxonomies for different senses: sound, visual, smell [14]

(9) Conclusion and Future Directions
Tutorial Length: 1.5 hours.

2 CONCLUSION
Linked data such as structured knowledge hierarchies provide in-
valuable source of information pertaining to concepts, their relation-
ships, and dependency structure. This tutorial discusses efficient
techniques for induction of taxonomies, and their subsequent dy-
namic updation to reflect emerging concepts. We show how current
techniques in text mining, graph processing and machine learn-
ing can be leveraged by breaking complex learning models into
smaller models. Such techniques would directly impact the repre-
sentation, enrichment, and management for analysis of evolution
and influence in semantic graphs and networks.
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