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ABSTRACT
Categorization of web-search queries in semantically coher-
ent topics is a crucial task to understand the interest trends
of search engine users and, therefore, to provide more in-
telligent personalization services. Query clustering usually
relies on lexical and clickthrough data, while the information
originating from the user actions in submitting their queries
is currently neglected. In particular, the intent that drives
users to submit their requests is an important element for
meaningful aggregation of queries. We propose a new intent-
centric notion of topical query clusters and we define a query
clustering technique that differs from existing algorithms in
both methodology and nature of the resulting clusters. Our
method extracts topics from the query log by merging mis-
sions, i.e., activity fragments that express a coherent user
intent, on the basis of their topical affinity. Our approach
works in a bottom-up way, without any a-priori knowledge
of topical categorization, and produces good quality topics
compared to state-of-the-art clustering techniques. It can
also summarize topically-coherent missions that occur far
away from each other, thus enabling a more compact user
profiling on a topical basis. Furthermore, such a topical user
profiling discriminates the stream of activity of a particular
user from the activity of others, with a potential to predict
future user search activity.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Clustering;
H.3.5 [Online Information Services]: Web-based services

General Terms
Algorithms, Human factors
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Topic, Mission, User intent, User profiling, Query log
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1. INTRODUCTION
Methods and algorithms for improving web search have

been extensively studied in the last two decades. In the vast
majority of the cases, such methodologies are query-centric,
i.e., they exploit only the query itself to understand a user’s
intent and to provide relevant results. Only recently user
search activity has been studied by looking at the entire set
of actions she performs in order to satisfy a need. Such a line
of research is based on the observation that users searching
the web often perform a sequence, or chain, of queries with a
similar information need [27]. Empirical studies have indeed
shown that most of the needs are actually too complex to
be satisfied by just one query [13]. Hence users are inclined
to organize their search activity in so-called missions.

By way of example, let’s consider the activity of a user
who wants to purchase a vacuum cleaner. She will probably
organize her queries in a number of sequential steps. Initially
she starts acquiring information about available brands and
models. In a second phase she will look for reviews and
comparisons between different models with similar features.
Finally, she will search for sellers who offer the chosen model
at an advantageous price or with an extended guarantee.
Each single step is a different granular task and the totality
of tasks are meant to fulfill the “vacuum-cleaner purchase”
need. In a similar scenario, an unsatisfied user who wants
to return a vacuum cleaner is going to submit queries such
as “returning shark navigator” or “dyson customer service.”
The two needs in this example concern particular aspects
related to the same general topic “vacuum cleaner.” We use
the term topic in its acceptation of mental object or cogni-
tive content, i.e., the sum of what can be perceived, discov-
ered or learned about any real or abstract entity. In such
a sense, topics naturally emerge from user search activity,
since queries are issued to discover or learn facets (model,
name, characteristics, pros and cons, price, seller’s location,
return policy) of a cognitive content (vacuum cleaner).

In this paper we present a methodology to extract top-
ics from query logs. Our objective is inherently different
from previous attempts to classify queries according to a
predefined set of categories, because our definition of topic
encompasses and outstrips the definition of category. Cate-
gories like shopping, sport, news, and finance can indeed be
seen as the perspective or focus of a search mission in the
context of a particular topic.

We propose a mission-based clustering technique to ag-
gregate missions that are topically-related. As a first step
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we train a classifier to predict if two different missions have
a similar topical connotation. The learned function takes
as input two sets of queries and computes the probability
that they are topically-related. Such a function is used as
a similarity metric by an agglomerative algorithm to merge
missions into large topical clusters.

The resulting topics would be useful in a number of dif-
ferent scenarios where great advantage can be derived by
performing query categorization in a more natural, intent-
driven fashion, without any constraint imposed by artificial
categories. As an application of the methodology, we show
how to build user profiles over topics and we use such profiles
to predict user behavior.

The paper is organized as follows. In Section 2, we will
give an overview of related work. Section 3 introduces ter-
minology and presents the problem we aim to solve. Sec-
tion 4 presents a semi-supervised classifier able to detect if
two different missions belong to the same topic. A greedy
agglomerative algorithm for topic extraction is illustrated in
Section 5. The experimental framework and the results are
respectively described in Sections 6 and 7. Section 8 presents
an application of our methodology for user profiling.

2. RELATED WORK
Query chains, missions, goals. Previous work on query

log mining has introduced general and widely used terms
to define different structural features of the query log and
behavioral aspects of the search engine users. Typically, se-
quences of query reformulations aimed to achieve the same
atomic search need are referred as query chains [27]. More
relaxed notions of coherence within the search session are
represented by the concept of logical session [2] and search
mission [20], namely a set of queries that express a complex
search need, possibly articulated in smaller goals. Our work
uses missions as atomic elements to build behavioral-driven
query clusters.

Query clustering. Even if closely related to the docu-
ment topic extraction task [29] or to multi-document sum-
marization [4], where items from a textual corpus are sum-
marized in one or more, possibly hierarchical [17] categories,
our work gives a contribution to the query clustering area.
Currently, query clustering is one of the hot topics in query
log mining [6].

Grouping together queries with strong semantic relations
is a task that is intrinsically harder than classic topic ex-
traction or web document clustering [37], because of the
short textual information contained into queries. Many ap-
proaches to query clustering rely on the computation of some
notion of similarity between query pairs. When dealing with
query classification, where the semantic categories are de-
fined a-priori, it may be sufficient to compute the similar-
ity based only on textual features to obtain good classifi-
cation results [7]. Even classification based only on the so-
called clickthrough data such as the information inside the
result pages associated to the queries, can lead to good re-
sults [18]. However, if predefined concept categorizations or
taxonomies are not available, lexical and content-based in-
formation taken separately are not sufficient to obtain good
clusters. In this regard, an attempt to cluster queries from
the Encarta user logs [33] showed that query-to-query sim-
ilarity metrics that linearly combine textual features with
click-through data can be used much more profitably in
query clustering than single-attribute similarities. Similarly,

hierarchical agglomeration of queries based on the similar-
ity of their search result snippets (that mix words from the
query and text from the page results) has also been prof-
itably used [12].

Approaches focused only on the activity of single users,
instead of the whole query log, are also interesting; in fact,
it is clear that detecting the topics that can well shape the
interests of the user is useful for personalization and recom-
mendation. For instance, Song et al. [31] proposed a topic
model able to extract most relevant themes from the user ac-
tivity through probabilistic Latent Semantic Indexing [19];
once identified, such themes are used as a topical summa-
rization of the user search history.

More recently, content-agnostic approaches based only on
the relations between queries and clicked URLs have been
explored. The idea is that similarity graphs between queries
obtained by proper projections on the multiple dimensions
of the query log accurately model semantic relations between
queries [3, 9]. Many approaches of this kind represent the
query-URL relation as a bipartite graph [6] and pick the
densely connected components, like bicliques [36], as rep-
resentative sets of similar queries or pages. Query graphs
where queries are connected by some lexical or semantic
relation are also commonly used. In order to overcome
the problem of query ambiguity in topic detection, query
graphs that introduce a lightweight query contextualization
using the pairs (sessionId, query) as nodes, instead of single
queries, have also been proposed [32].

Graph clustering. In this work we use a graph-based
model as baseline for our technique. This model relies on a
network community detection algorithm to partition a graph
of queries into topics. Community detection is an important
branch of complex network analysis that received much at-
tention in the recent past. One of the most known result
in this field is the definition of the modularity as a global
metric of goodness of clusters [26]. Even if finding maxi-
mum modularity partitions is an NP-complete problem [10],
numerous algorithms based on suboptimal modularity max-
imization has been proposed, until the intrinsic resolution
limit of modularity in cluster detection was discovered [16].
Lately, different fitness measures to define cluster quality
have been introduced (e.g., [24]) and many recently proposed
algorithms use local metrics to detect communities [15]. To
our purpose, we will use a graph clustering algorithm that
has been proved more effective than some of the main state
of the art competitors [23].

3. DEFINITIONS
Query log. In a search engine context, search activity is

typically recorded in a query log L defined as a set of tuples
τ = 〈q, u, t, V, C〉 containing the submitted query q ∈ Q, an
anonymized user identifier u ∈ U , the time t when the action
took place, the set of documents V returned by the search
engine, and the set of clicked documents C ⊆ V [8].

Missions. According to the original definition of Jones
at al. [21], a search mission is a related set of information
needs, resulting in one or more goals. In the example pre-
sented in the Introduction, “Purchasing a vacuum cleaner”
is a mission that represents an intent that a user wants to
satisfy. The three steps (“looking for models”, “models com-
parison,” and “sellers comparison”) are the three sub-tasks
(or goals) contained in the mission. All the queries in a mis-
sions have a strong topical coherence, which means that all
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Figure 1: The activity of three search engine users
partitioned at different levels. Every stream of user
queries can be articulated in different missions that
are aimed to satisfy a particular user intent. At a
coarser level, topics can include missions from dif-
ferent users and also portions of activity originated
by the same user at different times.

of them are issued with a main common objective. It has
been observed [13] that search activities that take place in
complex domains like “travel” or “health” often require sev-
eral queries before complex user intents are fully satisfied.

Topics. Missions are characterized by a main objective
and one or more sub-tasks related to the objective itself.
For example, a mission devoted to organize a trip, has the
travel itself as main objective and a number of functional
sub-tasks (like booking the flight, reserving the hotel, finding
a guided tour). Travel missions generated by different users
are all characterized by the same main objective regardless
the destination, the temporal order in which the sub-tasks
are issued or even the recreational activities booked. In such
a sense all the missions devoted to organize a travel can be
seen as part of a same topic or cognitive content.

Missions within the same cognitive content are meant to
fulfill one or more intents related to such a content. Here on,
we use the term topic to define a cognitive content that in-
cludes the sum of what can be perceived, discovered or learned
about any real or abstract entity. From an operational point
of view, this means that a topic can be seen as the aggrega-
tion of all missions with the same cognitive content gener-
ated over time across different users. A sketch depicting the
relation between queries, missions and topics can be found
in Figure 1.

Our goal. Our primary objective is to define a method-
ology to aggregate different missions within the same cog-
nitive content. This technique should be effective at differ-
ent scales. In a individual perspective, it should be able to
aggregate different but related missions of the same user,
while in a wider context it can be used as a tool to cluster
together all the missions that are topically coherent, across
users. The method must not rely on predefined categoriza-
tions or taxonomies of user intent or topics.

4. MISSION SIMILARITY CLASSIFIER
According to the definitions given in Section 3, the con-

cepts of mission and topic are strictly related to each other.
In fact, sequences of queries that express coherently a sin-
gle and well defined user intent must have a high degree of
topical coherence. This strong connection allows us to use
missions as fundamental building blocks for topics: distinct
missions can be merged together if their semantic connota-
tion is very similar. In the following, we first summarize

the state of the art technique that we use to detect mis-
sions from the query log; then we describe a method that is
able to effectively combine together pairs of topically-related
missions.

4.1 Detection of search missions
To partition the user activity into missions we use the

machine learning approach proposed by Donato et al. [13].
This method is able to detect the boundaries of a mission
by analyzing the live stream of actions performed by the
user on the search engine. This approach relies on a mod-
ule based on a gradient boosted decision tree classifier [34],
called the mission detector, that works at the level of query
pairs. Given a set of features extracted from a pair of con-
secutive query log tuples τ1, τ2 generated by the same user,
the mission detector indicates whether τ2 is coherent with
τ1, from a topical perspective. When two queries are found
to be incoherent, then a mission boundary is placed, so that
the query log L is partitioned into missions containing one
or more tuples.

The features used for the classifications come from three
different domains: the textual features, that include differ-
ent flavors of lexical similarity between the two queries, the
session features, that measure several aspects of the click
activity of the user in the time between the two queries and
in the overall session, and the time-related features that take
into account the inter-event time distance for some represen-
tative user actions. Using all of these feature together, the
mission detector is able to reach a 95% accuracy in detecting
boundaries on real user datastreams [13].

It has to be noted that missions identified by this method
are semantically much narrower than topics, because queries
in the same missions are not only constrained to be submit-
ted by the same user, but they are also consecutive in time.
Indeed, while a mission in theory can be fragmented in time,
the mission detector by definition can only aggregate consec-
utive queries and, in practice, generates short-lived missions.
Thus, the topical coherence constraints imposed on missions
are much stronger than those that we require to be applied
to topics.

4.2 Merging missions
Given the state of the art of mission boundary detection,

it is possible to segment the user activity of every query
log into missions. Furthermore, the strong topical coher-
ence of queries inside the same mission can be exploited
to generalize the approach used for mission boundary to a
topic boundary detection. The idea is to use a new clas-
sifier, the topic detector, trained in semi-supervised fashion
based on the data generated by the missions detector, to
decide whether two query sets belong to the same topic. Its
scheme is sketched in Figure 2.

Specifically, positive examples are automatically built by
splitting missions in two consecutive query sequences and
considering such two sequences as separate (sub)missions be-
longing to the same topic. Conversely, negative examples are
formed by sets of queries belonging to consecutive missions
of the same user, since we know they are topically unrelated
because they are separated by the boundary placed by the
mission detector. The topic detector is implemented with
a Stochastic Gradient Boosted Decision Tree (GBDT) [35].
GBDT outputs the probability that the given sample is from
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Figure 2: Training and application of the topic de-
tector. Positive and negative examples for the learn-
ing phase are respectively missions and pairs of con-
secutive missions that are detected by the mission
detector. Once trained, the topic detector can take
in input any pair of query sets and compute a con-
fidence score that can be interpreted as a topical
similarity between the two sets.

the positive class; applied to our case, this is the probability
that the two missions in input belong to the same topic. We
can interpret this probability as a similarity score in [0, 1]
measuring the topical relatedness of the two sets and, con-
sequently, the classifier can be seen as a topical similarity
function S .

The features given in input to the classifier are aggregated
values over features computed from all the query pairs across
two missions. Namely, given a (positive or negative) pair of
missions m1, m2, all query pairs q1, q2|q1 ∈ m1∧q2 ∈ m2 are
taken into account. Then, all the values of each feature are
aggregated over all the pairs yielding four scores representing
the average, standard deviation, minimum, and maximum
values for that feature. For each query pair, features from
three different categories are extracted1:

• Lexical features. Very often, similarity between the
text of different queries denotes a strong semantic rela-
tion (e.g., “paris cheap travel”and“travelling to paris”).
For this reason, we train the classifier using several
lexical features such as length of common prefix and
suffix, size of the intersection, edit distance, several
similarity measures computed at word and character
3-grams level, and many others.

• Behavioral features. The behavior of users during
the search activity gives much implicit information on
the semantic relatedness of queries. For instance, if
a user submits two queries in close succession, it is
likely that the two queries are very related to each
other, based on the assumption that the user activity
is bursty [5] and events happening in the same burst
are meant to accomplish the same task. However, since
user behavior is very heterogeneous, it is necessary to
aggregate behavioral information from several user ses-
sions. We compute the average values of the behavioral
features over a year of query log for each query pair
q1, q2 such that q2 has been observed at least once right
after q1 in the log.2 The average time and the average

1We do not report the complete list of features since they
are commonly used in session analysis [20, 8].
2Behavioral features are defined only for successive query
pairs observed at least 2 times. Else, a default value is used.

Algorithm 1 Iterative topic extraction

Require: Initial set of seed topics T0; similarity threshold θ ∈
(0, 1); termination threshold α ∈ (0, 1); topic similarity func-
tion S : T × T → [0, 1]

1: Ti+1 = T0

2: repeat
3: Ti = Ti+1 − T0 ; Ti+1 = T0

4: for T1 ∈ Ti do
5: Tx = T2 ∈ Ti+1|S (T1, T2) ≥ θ ∧ S (T1, T2) ≥

S (T1, T ), ∀T ∈ Ti+1

6: if a valid Tx has been found then
7: Ti+1 = Ti+1 − Tx + (Tx ∪ T1)
8: else
9: Ti+1 = Ti+1 + T1

10: end if
11: end for
12: until |Ti+1|

|Ti| ≤ α

number of clicks between two queries are examples of
behavioral features.

• Search result features. Intuitively, the page result
sets returned for a pair of topically-related queries will
be topically related as well, to some extent. Thus,
we consider a bunch of result-related features such as
the intersection between result sets and the similarity
between the vectors of the K most frequent words from
a given content dictionary [1] appearing in the N top
results.

We trained our topic detector using a balanced sample
of 500K mission pairs extracted from random user sessions
over the 2010 query log of the Yahoo! search engine. Results
of 10-fold cross validation give an AUC value of 0.95, thus
confirming that the topic detector is able to accurately dis-
criminate between sets of queries that come from the same
topic and those that do not.

One may think that the mission detector could have been
used as-is to extract topics by means of detecting pairs of
topically coherent queries among all the possible query pairs
and iteratively clustering them. However, this approach has
two main flaws. First, the computational effort to classify
every possible query pair in Q is prohibitive given the dimen-
sion of real search query logs. Second, the mission detector
is trained given query pairs that are adjacent realizations of
the same user activity stream, while in topic extraction we
are interested in comparing queries of different users, possi-
bly in different times. On the other hand, classifying pairs
of query sets allows us to leverage the mission data as an al-
ready available source. In any case, even if it were possible
to classify every query pair, the clustering step would still
require similarity computation for query sets.

5. GREEDY AGGLOMERATIVE TOPIC
EXTRACTION

The topic similarity function S can be used iteratively to
extract topics from the mission data. Consider a set T0 of
seed topics where each topic contains only the set of queries
submitted during a single user mission. This set is a very
strict partition of the query corpus, where each partition is
not only a coherent topic but it is the expression of an intent
of a single user.

Our topic extraction algorithm is in the spirit of classic
hierarchical agglomerative clustering [34]. As shown in the
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Algorithm 1 pseudo-code, at any iteration i, the two sets
Ti and Ti+1 are considered. Initially, Ti+1 = {T0} and
Ti = {T0 − T0}.

Each topic T ∈ Ti is compared with all topics Tx ∈ Ti+1

through the function S (T, Tx); if topic similarity is below
a certain threshold θ for all pairs, then T is moved from Ti

to Ti+1. Otherwise, the pair (T, Tx) with the highest score
is greedily selected, T is removed from Ti and its elements
are added to Tx, creating a broader topic. The algorithm
is iterated as long as the relative decrease in the number of

topics is large, or until |Ti+1|
|Ti| > α ∈ (0, 1).

The complexity of a single iteration, in terms of num-
ber of computations of the S function, is O(|Ti|2) and

Ω(|Ti|), since |Ti|2−|Ti|
2

computations of the topic similarity
are needed if no topics are merged, while just |Ti| compar-
isons take place if every topic merges into a single supertopic.
The number of iterations needed depends on the stop condi-
tion α, but it is always bounded by O(log(|T0|)), thus lead-
ing to an overall algorithm complexity of O(|T0|2 ·log(|T0|)).

Even if the number of iterations required is considerably
smaller than the theoretical upper bound, in practice the
quadratic complexity of computing S for every topic pair is
still too costly for large query logs. However, the efficiency
can be improved through a heuristic approach based on the
observation that a very small portion of all possible topic
pairs are actually merged in each iteration. To reduce the
number of comparisons, the topic set Ti is partitioned into
several smaller sets that are given in input to independent
instances of Algorithm 1, so that the S function is applied
only between elements inside the same partition and not
across partitions. In addition to reducing the number of
topic pairs considered, this approach enables a parallel im-
plementation of the clustering algorithm, thus dramatically
decreasing the actual computation time, even though the
theoretical complexity remains the same. For brevity, in the
following we will refer to our Greedy Agglomerative Topic
Extraction algorithm using the acronym GATE.

The choice of a good partitioning criterion is crucial for
the outcome of GATE. To maximize the number of topics
merged at each iteration, partitions should contain topics
that are more likely to be combined than randomly selected
topics. This can be done by putting in the same partition
topics that share some of the features given in input to the
classifier used to compute topic similarity; for instance, top-
ics can be partitioned on the most common character-level
3-gram that appears in their query sets, given that topics
with some lexical similarity are more likely to be merged
than random topics. The partition criterion can also possi-
bly change at each iteration.

Aggregation on the basis of user identity is one of the
most relevant to our study. If the first iteration of the al-
gorithm is run keeping the missions of different users in dif-
ferent partitions, then the resulting agglomeration produces
a minimal group of topically-coherent mission sets, called
supermissions. These supermissions allow to define more
compact profile of user activity on a topical basis.

6. EXPERIMENTAL SETUP
We extracted the total activity of 40K users from 3 months

of the anonymized Yahoo! query log. Statistics for the data
set are reported in Table 1. The queries in the log were
sequentially grouped into 3,005,724 missions using the mis-

Table 1: Dataset statistics
Unique queries (uq) 2,198,815
Missions (m) 3,005,724
Unique missions (um) 1,606,733
Avg uq per mission 1.72
Avg m per user 75
Avg um per user 57

sion detector described in Section 4.1. The number of mis-
sions per user and number of unique queries per mission are
broadly distributed with average values as in Table 1. The
first iteration of GATE is performed with a user-based ag-
gregation criterion, therefore the topics produced in the first
iteration are supermissions. The average number of super-
missions per user is 42, against the 57 missions per user,
meaning that GATE can be used to compress the user de-
scription by nearly 30% on average.

In the rest of this section, we present OSLOM [23], a repre-
sentative network-based clustering algorithm used for com-
parison with GATE. We then introduce the metrics used to
compare such methodologies. The two methodologies are
profoundly different, therefore a fair comparison is difficult.
Nevertheless we show that our approach has a number of
advantages when compared with OSLOM.

6.1 Baseline: Topic extraction through
network clustering

We compare GATE with a content-agnostic query cluster-
ing algorithm based on query graphs. As mentioned in Sec-
tion 2, graph-based clustering considers the queries as nodes
and model relation between them with edges. Depending
on the relation used, the query graph can assume different
topologies and semantics [2]. The choice of comparing our
method with a baseline from a different paradigm is moti-
vated by the significant body of recent work and promising
results using graph based approaches for query clustering. A
thorough comparison between agglomerative clustering and
graph based approaches is still missing in the context of
query log mining.

The input to our baseline is a query graph based on the
click co-occurrence relation, also known as URL cover graph [2].
Such graph models the topical relatedness of queries from
the perspective of the common results to which they lead
users: two queries are connected if users click on the same
results. Edges are weighted depending on how many distinct
clicked URLs are shared by the queries. In principle, several
different query-query relations can be mapped onto a single
query graph; for instance, it is quite common to mix lexical
similarity and click co-occurrence (or other content-related
similarity measures). In the present evaluation we consider
a simple URL cover graph as input to our baseline.

To detect topically coherent clusters from the URL cover
graph, we use a network community detection algorithm. In-
tuitively, the basic idea of community detection is to spot
groups of nodes that have many connections with each other
and few to the rest of the network, thus forming a dense clus-
ter. Accordingly, a cluster on the URL cover graph would
include a set of queries that have many more clicked URLs
in common compared to all the other queries in the corpus.

Among the many community detection algorithms in the
literature [15], we adopt the recently proposed OSLOM (www.
oslom.org). This choice is motivated by its good perfor-
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mance over other state of the art algorithms on both syn-
thetic benchmarks [22] and real network datasets [23]. Fur-
thermore, unlike the vast majority of other community de-
tection techniques, OSLOM automatically detects overlap-
ping communities and hierarchies of clusters. This allows a
more direct comparison with our greedy algorithm, which
also outputs overlapping topics through a hierarchical ag-
glomeration process.

OSLOM performs clustering based on the optimization of
a local fitness function that measures the statistical signifi-
cance of the detected cluster compared to a global random-
ized null model known as configuration model [25]. Clus-
ters are detected by selecting several random seed nodes in
the graph and finding the locally optimal clusters that in-
clude the seed nodes. Similar clusters found over different
realizations of random seeds are then merged together, thus
originating a minimal set of clusters that may overlap. The
procedure is iterated over higher hierarchical levels by col-
lapsing clusters into nodes. Iterations stop when no higher
level clusters are found. For further details about the algo-
rithm we refer to the original paper [23].

6.2 Metrics
In the following, we present the criteria used for a quanti-

tative and qualitative comparison between the two method-
ologies. Although prior work has relied on human editors,
manual evaluation for a huge corpus of topics is unfeasible,
therefore here we focus on automatic evaluation metrics.

Clustering measures
The first group of metrics are meant to give a quantitative
comparison of the two methods. We define three measures:

query set coverage: fraction of queries that the method-
ology is considering in the clustering phase;

singleton ratio: fraction of queries that remains isolated
in singleton at the end of the iterative procedures;

aggregation ability: percent of topics that are aggregated
in two consecutive iterations or in two consecutive hi-
erarchical levels.

Cluster purity
The quality of a topic depends on its purity, or semantic
coherence. When no ground truth about the correct com-
position of a topic is available, an automatic way to assess
purity is to consider the results for all pairs of queries in a
topic. We compare the result sets of two queries to assess
how related they are, and average the relatedness over all
pairs.

Perhaps the simplest way to establish the relatedness of
two queries is to compare the result sets returned for each
query and use the intersection to derive a measure of simi-
larity [28, 14]. However, a more fine-grained criterion that
uses the information inside the clickthrough result provides
a more accurate evaluation basis. We construct a bag-of-
words vector for each query, consisting of the concepts in
the documents returned for this query. Concepts are se-
lected using a predefined dictionary [1]. For a given query
q and a concept dictionary D, Algorithm 2 computes the
vector of concepts with their scores. The parameters are set
to k = 10 and K = 20. The score of a term t ∈ D depends
on the number of documents in which the term t appears,

Algorithm 2 Algorithm to compute the concept vector

Require: Concept dictionary D, query q, parameters k, K
1: Retrieve set R of top-k results for q
2: T = Terms from D contained in R
3: Eliminate from T terms in q
4: for term t ∈ T do
5: d(t) = number of results in which t appears
6: r(t) = sum of ranks of the results in which t appears

7: R(t) =
((k+1) d(t))−r(t)

d(t) k

8: S(t) = d(t) R(t)
k

9: end for
10: Return the K terms with highest score S(t)

Table 2: Examples of the concept vector
Query Terms in aboutness vector (ordered)
iphone iphone, store, 4, camera, phone, apps, inc,

facetime, mode, recording, software, 3gs,
resolution, battery, shop, network, ios, 3g,
broadband, ipod

iphone 4 reviews phone, iphone, store, 4, camera, apple, re-
views, apps, review, 3g, recording, model,
inc, screen, resolution, ipad, coverage,
network, photo, 3gs

toyota prius hybrid, car, prius, toyota, mpg, photo,
price, sales, specs, vehicle, yaris, cars, re-
view, reviews, msrp, specification, milage,
model, economy, research

toyota yaris yaris, hatchback, car, price, hybrid, toy-
ota, models, spec, mpg, liftback, dealer,
model, vehicles, review, photo, reviews,
city, prius, transmission,vehicle

and on the sum of ranks of those documents. Table 2 shows
examples of two pairs of topical related queries, and their
top concept terms ordered by descending score. Given the
concept vectors of the queries that it contains, the concept
vector of a topic is obtained by marginalizing all concept
vectors and keeping the top concept terms.

Let us define the purity of a topic by considering all pairs
of terms in the corresponding concept vector and measure
how much they are related to each other on average. One
could achieve this using the well-known pointwise mutual
information (PMI) given by:

PMI(t1, t2) =
f(t1, t2)

f(t1)f(t2)

where f(t1, t2) is the number of queries that have both terms
t1 and t2 in their concept vectors, and f(t1), f(t2) are the
numbers of queries that have t1 and t2 in their concept vec-
tors, respectively. One weakness of PMI is that it may be-
come very unstable for a pair of rare terms. For exam-
ple, if both f(t1) and f(t2) are small, a few coincidental
co-occurrences may lead to a superficially high PMI value.
To take this into account, we use the log-likelihood ratio,
which is the expected value of the PMI:

LLR(t1, t2) = p(t1, t2)PMI (t1, t2) + p(t1, t2)PMI(t1, t2)

+ p(t1, t2)PMI(t1, t2) + p(t1, t1)PMI(t1, t1)

where t denotes the set of all terms except t. LLR fixes the
unstability problem of PMI. Note that when the marginal
query frequencies f(t1) and f(t2) are small, the other terms
in the LLR equation will start to dominate. Averaging LLR
across all the pairs of terms in the topic concept vector, we
obtain the log-likelihood ratio for the topic.
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Figure 3: Distribution of connected components size
in the query graph, except the giant connected com-
ponent (GCC).

URL coverage
The topic LLR only focuses on the purity of the topic, which
by itself is not too meaningful for the evaluation. A trivial
solution of considering each query as a topic would yield
very high topic LLR values. Similarly, one can easily clus-
ter only synonymous queries, such as the query “facebook”
and its misspellings, again leading to a high purity mea-
sure. Similar to singletons, such topics consisting of queries
with almost identical results are not useful. To generate
meaningful abstractions of the query space, it is desirable
to aggregate related queries with different result sets. We
therefore need a measure of coverage to complement purity,
as suggested by previous work on clustering [30].

We measure the coverage by the number of unique URLs
in the result sets for the queries in the topic. Given the
2010 query logs of the Yahoo! search engine, we extract all
distinct URLs clicked by users for each query. To remove
the tail of the clickthrough distribution, URLs that received
less than 0.01 clickthrough rate are discarded. We define
the coverage of a topic as the aggregate number of distinct
URLs across the queries in the topic. Note that the trivial
solutions of singleton topics or synonymous queries have very
low coverage. Overall, our goal is to extract topics with both
high purity and high coverage.

7. EXPERIMENTAL RESULTS
In this section we compare the two clustering algorithms

according to the metrics presented in Section 6.2.
The GATE algorithm has a full query coverage on the

dataset, because, by definition, every query can be found in
at least one mission. Conversely, when dealing with graph-
based clustering algorithms, the sparsity of the graph can
lead to the emergence of isolated components that directly
affect query coverage. In fact, since the vast majority of
queries share very few clicked results, it turns out that the
URL-cover graph is composed by a galaxy of tiny discon-
nected components. These little islands cannot be merged
with other components due to lack of connections and, since
they are mainly singletons, they do not represent any mean-
ingful cluster just by themselves. The size distribution of
the components in the URL-cover graph generated by our
dataset is shown in Figure 3. We note that less than 400K
queries are in the Giant Connected Component (GCC), thus
leading to query set coverage below 0.2.

Figure 4 shows the distribution of the topic size with in-
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Figure 4: Distribution of topic size for GATE and
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distributions at different hierarchical levels.
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vs. GATE iterations. The values from the lowest
hierarchical level of OSLOM are reported as a ref-
erence.

creasing number of iterations in GATE and in the three
different hierarchical levels detected by OSLOM. The first
thing to observe is that the singleton ratio in GATE de-
creases from 0.55 in the first iteration to 0.27 in the last
one, while in OSLOM it remains stable around 0.88. Sec-
ond, while in GATE the number of both medium-size (10-
100) and big size (>100) topics grows with the iterations,
in OSLOM the medium-size topics that are detected in the
first hierarchical level tend to be merged in very large com-
prehensive and heterogeneous topics, with up to some tens
of thousands queries. Note that the low frequency of size-2
topics in OSLOM is probably due to the tendency of the
algorithm to merge dyads in larger clusters to optimize the
partition fitness function.

Lastly, the aggregation ability of the two algorithms is
shown in Figure 5. In GATE the number of topics decays
quickly in the early iterations and then stabilizes, until the
stop condition is reached. The final number of topics is
around 500K, against the 180K found by OSLOM; recall
that OSLOM only deals with the fewer queries in the GCC.
The number of topics in the different hierarchical levels in
OSLOM varies very slightly. Furthermore, the average size
of OSLOM topics is more than double the size of the topics
generated by GATE, mainly because of the presence of very
large topics that skew the mean value.

Results on topic purity are shown in Figure 6. To check
how the purity of the topic decreases with its size we com-
puted the correlation between the topic size and LLR by
averaging the LLR values of the topics with the same size:

〈LLRs〉 =
1

|T ∈ T : size(T ) = s|
∑

T∈T :size(T )=s

LLR(T ).

As expected, the larger the topic, the more heterogeneous
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Figure 7: Left: Correlation between topic size and
URL coverage. Right: Ratio between the two quan-
tities.

the queries included, so we observe a negative correlation.
OSLOM’s topics have on average higher LLR than topics
from GATE; this emerges clearly when computing the ratio
between the average scores obtained by the two approaches
for each topic size. This is mainly due to the fact that
OSLOM generates many topics that include just concept re-
formulations, i.e., queries that are different from the lexical
perspective but express exactly the same concept (e.g. “du-
ran duran”, “duan duran”, “duran”, etc.). As we remarked,
such queries surely belong to the same cluster, but still they
do not express a complex cognitive content. For this reason,
it is necessary to complement the purity measure with the
URL coverage. In Figure 7, the same analysis made for the
URL coverage shows that the greedy algorithm has much
higher coverage than OSLOM. If considering purity and
coverage metrics separately is useful to learn the peculiar-
ities of the two approaches, a joint measure that captures
the tradeoff between the two scores is useful to compare the
overall quality of the query clusters. Such unified measure
can be obtained by multiplying the purity by the coverage
for all the size classes of the topics and then comparing the
resulting curves. Results in Figure 8 show that GATE out-
performs OSLOM for all the medium-small topic sizes, that
represent the great majority of topics. For clusters contain-
ing about 100 queries the two approaches are comparable,
and only for some bigger, more rare topics OSLOM achieves
the best performance.

To summarize, if we consider all the quality measures to-
gether, we can conclude that GATE leads to a better topical
query clusters because it is able to process all the queries in
the corpus, and most of the topics it generates have a better
tradeoff between purity and coverage compared to OSLOM.

As a final remark we note that a fair comparison of the
computational time needed by the two techniques is hard,
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Figure 8: Trade-off between purity and URL cover-
age

first because OSLOM’s theoretical complexity is difficult to
estimate [23] and last because GATE can run in parallel
while the current OSLOM implementation does not enable
parallelism. However, we underline that parallelization is a
strong advantage of GATE, because when dealing with real-
life data sizes, it is hard to regard non-parallel algorithms
as practical solutions for clustering web search queries.

8. USER PROFILING
A practical way to use the topics extracted from the query

log is to profile users on a topical basis: each user can be
described by the set of topics that match her queries. Since
OSLOM has a small query coverage and allows only for an
exact match between the user queries and the queries in-
side the clusters, it is not practical to employ it in profiling.
Therefore, here we focus on user profiling based on our ap-
proach.

To build the profile of a user, we apply the topical simi-
larity function S between the user missions and every topic
that contain at least one query from that mission, then se-
lecting the best match. Formally, let us define the topic that
best matches mission m as:

Tm = arg max
T∈T

S (m, T ).

Given the best match scores, let us define the topical profile
of a user u as a weighted vector over the topics matching
her missions:

Pu =

{(
Tm,

S (m, Tm)∑
m′∈Mu

S (m′, Tm′)

)
,∀m ∈ Mu

}
,

where Mu is the set of missions of user u. For a more com-
pact user representation, supermissions can be used instead.

The topical profile can be used not only to detect the top-
ics relevant to the user, but also to predict her future search
goals. To check such a prediction potential, we perform
an experiment to examine whether a user profile matches
her future missions better than random missions from other
users.

The match between a mission and a profile is performed
by computing the S function between the mission and ev-
ery topic in the profile, and scaling the resulting scores by
the weights of the corresponding topics in the profile. This
yields a vector of match scores over the profile topics. The
match vector can be generalized to sequences of missions by
averaging the elements of the vectors across the missions.

We produce the topical profile for the 40K users in the
dataset starting from the 3 months of query log. For each
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Figure 9: Example of match of missions sequences
on a topical user profile. On the x axis are the topics
in the profile; on the y axis are the match scores of
the mission sequences for each topic. The sequence
originated by the same user has more spikes com-
pared to the sequence of the random user. When
the values of the each curve are sorted, the best
matching sequence is evident by looking at the top-
N scores.

user we select two sequences of missions from the 30 days
right after the 3 months considered. One sequence comprises
of all the missions generated by the same user in the 30-day
period. The other is a sequence of equal length generated
by another user chosen at random among all other users.

Intuitively, a mission is likely to match at most a few of the
several, possibly different topics in a user profile. Given this
intuition, to decide which of the two sequences best matches
the profile, we focus on the top-N (N = 5) elements of the
match vectors between topic profile and mission sequences.
We then apply a simple majority rule, i.e., which sequence
has the most elements with higher match scores. This idea
is exemplified by Figure 9.

Using this technique we are able to detect the user’s own
sequence in 65% of the cases. We stress that the mission
sequences of randomly selected users are strongly biased to-
ward high-frequency queries such as “facebook,” “amazon,”
and so on. Since these are shared by a large number of users,
any user profile is likely to match them, leading to a decay
in detection performance. For this reason we divided the
random sequences into three sets according to the average
frequency of their queries. The accuracy rises to 72% when
considering the sequences with lower frequency queries and
drops to around 55% when considering the sequences with
higher frequency queries. 65% success in prediction can be
considered a good result. Even if the interest of a given
user would presumably be quite stationary within a partic-
ular domain, in web search, where a much wider range of
suitable topics is available, the user focus can be often in-
constant in time, independent by past search sessions and
made even more variable by bursty search activity triggered
by external events (e.g., “Michael Jackson death”), hardly
predictable by looking only at the user history. This issues
make this prediction task much more difficult compared to
domain-specific predicition or recomendation.

9. CONCLUSIONS
The behavior of the users in submitting queries to a search

engine, including the implicit and explicit information that
their actions reveal about their search intent, is a crucial
element to determine what is the topic of a query or of a
sequence of search actions. We introduce a novel definition
of topic in the context of query log analysis and propose

a topic extraction algorithm based on agglomerative clus-
tering of sequences of queries that exhibit a coherent user
intent. Our algorithm relies on a semi-supervised classifier
that can tell if two query sets are topically coherent with
excellent accuracy (AUC 0.95). We compare our method
with a graph-based clustering baseline, showing its advan-
tages on query coverage and on the trade-off between purity
and resource coverage of the clusters. Finally, we define the
topical profile of a user in terms of a topic vector that best
defines the user search history. With our classifier we are
able to discriminate a query sequence submitted by the pro-
filed user from a random query sequence 72% of the time in
the best case scenario.

One could consider more sophisticated baselines, for in-
stance combining click co-occurrence with lexical similarity
features, or even using query clustering algorithms based on
alternative paradigms [7, 18, 11]. A more direct evaluation
could be achieved with the golden standard of human judg-
ments on the quality of the topics. A preliminary effort in
this direction has pointed to the difficulty of human inspec-
tion of topic quality, as well as the challenge of identifying
a suitable tradeoff between topic specificity and coverage.

This work opens several research directions. In particular,
we are working on the formulation of a user-to-user similar-
ity metric based on topics that can overcome the sparsity
problem of similarity metrics based on exact query matches.
Finally, we want to explore in greater depth the potential
of the topical profiling technique to predict future search
activity and provide novel search recommendation services.
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