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Social dimensions impact individual 
sleep quantity and quality
Sungkyu Park 1,2,8, Assem Zhunis 2,3,8, Marios Constantinides 4, Luca Maria Aiello 5,6, 
Daniele Quercia 4,7* & Meeyoung Cha 2,3*

While sleep positively impacts well-being, health, and productivity, the effects of societal factors on 
sleep remain underexplored. Here we analyze the sleep of 30,082 individuals across 11 countries using 
52 million activity records from wearable devices. Our data are consistent with past studies of gender 
and age-associated sleep characteristics. However, our analysis of wearable device data uncovers 
differences in recorded vs. self-reported bedtime and sleep duration. The dataset allowed us to study 
how country-specific metrics such as GDP and cultural indices relate to sleep in groups and individuals. 
Our analysis indicates that diverse sleep metrics can be represented by two dimensions: sleep quantity 
and quality. We find that 55% of the variation in sleep quality, and 63% in sleep quantity, are explained 
by societal factors. Within a societal boundary, individual sleep experience was modified by factors 
like exercise. Increased exercise or daily steps were associated with better sleep quality (for example, 
faster sleep onset and less time awake in bed), especially in countries like the U.S. and Finland. 
Understanding how social norms relate to sleep will help create strategies and policies that enhance 
the positive impacts of sleep on health, such as productivity and well-being.

Recent years have seen breakthroughs in research into the biological, cellular, and biochemical mechanisms 
underlying sleep. The circadian clock modulates sleep based on the timing and levels of natural and artificial 
light  exposure1. However, multiple factors influence sleep, including environmental (e.g., sunset and sunrise 
times), social (e.g., cultural norms), and individual attributes (e.g., age and gender). The human sleep project 
advocated equipping people with a range of mobile sleep-tracking devices to study their sleep patterns in real-
time and on a large scale, referring to the impact of social factors as the next frontier in sleep  research2. Studying 
the interplay between sleep and societal factors necessitates large-scale datasets that bridge multiple societies. 
Recent app-based surveys and sensing technologies have expanded sleep analysis to the population  level3,4 and 
even to a global  scale5,6. However, most previous sleep studies focused on small-scale  data7.

Past research indicates that different methods lead to discrepancies with actual sleep levels. Indeed, self-
reports, commercial accelerometers, actigraphy, and even the gold standard for measuring sleep, polysomnog-
raphy, have been shown to overestimate or underestimate  sleep6,8–10. Recent years have seen advances in com-
mercial devices that record individual activity. A study conducted in 2017 found that although wearable devices 
were less effective in tracking sleep patterns in individuals with sleep disorders, they were still comparable to the 
gold standard methods used for monitoring normal  sleep11. A large dataset from Fitbit was analyzed in another 
study to examine the variations in sleep behaviors among different social  groups12. The study found significant 
differences in sleep patterns based on gender and age among people living in Oceania and East Asia. These find-
ings prompted questions about the potential factors, such as genetic or adaptive mechanisms, that contribute 
to these differences. With these issues in mind, we assessed wearables as a source of data for examining the 
influence of culture on these sleep patterns, leveraging their wide adoption and ability to track various aspects 
of human physiology.

Here we analyzed sleep and physical activity data from 30,082 individuals who wore the same wearable device 
brand. Data from individuals representing 19 cities across three continents were examined. The data allowed us 
to study sleep across multiple societal boundaries at an unprecedented scale. The 52 million activity records and 
user demographic information recapitulated known influences of age and gender on sleep. However, bedtimes 
measured using wearables appeared substantially delayed compared to self-reports, suggesting a systematic 
reduction in actual sleep duration. We found that social effects explain up to 63% of variations in measurements 
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of sleep quantity measures (e.g., sleep duration), and 55% of the variation in sleep quality measures (e.g., sleep 
efficiency). When we controlled for country effects, our data show that enhanced or poor sleep experiences are 
explained by controllable factors such as exercise. The effect size, or the balance between societal and individual 
influence, varied by country. This interplay between social constructs and individual behavioral efforts has not 
previously been recorded on the scale examined here. Our analysis provides a quantitative basis for designing 
guidelines and policy interventions that center on sleep for social and welfare programs.

Results
The data analyzed came from 11 different countries (Fig. 1A) and were collected between 2014 and 2017 in 19 
cities where the studied wearable device was prevalent. The smallest city contained 495 users, and the largest 
city contained 8924 users. Sleep was inferred by the sensing technologies in wearable devices and the associated 
algorithms, which indicated a global median of 12:01 AM bedtime and 7:42 AM wake time, respectively (Fig. 1B). 
The data contained user demographic information and both daytime and nighttime activity. The user base had 
a slightly higher presence of males (55%) and older adults (i.e., the median age was 42 years). The median BMI 
and number of steps per day recorded were 25.4 and 6,951, respectively (Fig. 1C). The day-of-week pattern 
indicated that, in general, users were most active on Wednesdays (Fig. 1D). This finding is consistent with other 
observations of higher activity (e.g., trading volume, physical activity) in the middle of the  week13–15. For all 
groups younger than 70, bedtimes and wake times were generally much later in females than males (Fig. 1E). 
Additionally, females had significantly shorter sleep durations than males, particularly for individuals aged 30–40 
(refer to Table S6 in Supplementary Material) (Fig. 2).

Social constructs can explain key sleep measures at the population level. To closely investigate 
the effects specific to each city, we compiled a total of five literature-driven sleep metrics: sleep duration, sleep 
history, mid-point in sleep on free days corrected for sleep debt on work days (MSFsc), K-hour deviation, and 
sleep efficiency (see Methods for more details). After running a principal component analysis (PCA) on these 
sleep statistics, we identified two prominent dimensions of sleep that represented individual sleep quantity and 
quality-related measures, respectively. The process of dimension reduction is described in Text S2 of the Supple-
mentary Materials. Together these two dimensions explained 83% of variations in the data, ensuring a good fit.

Testing the presence of country effects on sleep quantity, we also examined how sleep quantity varied accord-
ing to standard social constructs. In addition to log-GDP, we incorporated Hofstede’s cultural dimensions and 
considered well-established indices, such as individualism (IDV) and uncertainty avoidance index (UAI), and 
found meaningful correlations with sleep measures (see Materials and Methods and Fig S2 in Supplementary 
Material) confirming significant social influence on sleep. In the individual-level assessment, as presented in 
Table S7 of the Supplementary Material, the city of residence could explain only a marginal proportion of the 

Figure 1.  Demographic distribution of study participants. (A) Countries included in the study. (B) Distribution 
of bedtime and wake time. (C) Distribution of age, daily steps, and BMI among the users. (D) Distribution of 
total data counts by day of the week. (E) Sleep scheduling by age and gender (median values with standard error 
bars).
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two dimensions of sleep (Adjusted R^2 0.10 for Sleep Quantity and 0.03 for Sleep Quality). This suggests that the 
impact on sleep may not be solely determined by location, but rather by the cultural environment of the cities 
in which individuals reside. Therefore, we examined how the two sleep dimensions are associated with popular 
social constructs by considering six linear models (M1 to M6) at a city-specific level in Table 1. For each PCA 
dimension, the baseline models (M1 and M4) only consider log-GDP and control for the median age of users. 
The full models (M2 and M5) use all social constructs. The final compact models, M3 and M6, are trimmed-down 
versions that only contain significant factors by the StepAIC feature selection method. The analysis indicates 
that a few relevant social constructs (such as GDP, IDV, and UAI) alone can explain 63% of variations in sleep 
quantity and 55% of variations in sleep quality (refer to Table 1). This is strong evidence that both the amount 
and quality of sleep are associated with the social environment that users experience.

Individual activity can improve sleep within societal boundaries. In order to uncover individual 
influences on sleep, we divided the individuals residing in each city into the top one-third and the bottom one-
third based on their activity levels (measured by daily steps, as described in Materials and Methods). We then 
compared their composite sleep dimensions using propensity score matching. We found that individuals who 
exercise have better sleep efficiency, which means they spend a larger portion of their time in bed actually sleep-
ing. Their total sleep duration is also shorter than that of non-exercising individuals by a small margin. As a 

Figure 2.  Country effect on sleep duration, indicated by bedtime and wake time. (A) Cross-correlation between 
the median sleep duration, bedtime, and wake time in data from 11 countries. The effect of the residing country 
on sleep duration primarily manifests through bedtime rather than wake time. (B) The effect of log-GDP on 
sleep, demonstrating that countries with higher GDP exhibit a longer delay in bedtime.

Table 1.  Regression models between sleep dimensions and social constructs on the city level. Statistical 
significances are marked with the number of *’s based on their significance levels (i.e., ***p < 0:01; **p < 0:05; 
*p < 0:1)

Feature

Sleep quantity (RC1) Sleep quality (RC2)

M1 M2 M3 M4 M5 M6

Baseline Full StepAIC Baseline Full StepAIC

log-IDV 0.80** 0.61*** 0.62 0.56*

UAI 0.14 0.53 0.60*

log-LTO 0.06 0.16

log-IND  − 0.04  − 0.04

log-GDP  − 0.74***  − 0.90***  − 0.86***  − 0.70***  − 0.86***  − 0.91***

Median Age  − 0.46*  − 0.33  − 0.30 0.04  − 0.02

Intercept 0.00 0.00 0.00 0.00 0.00 0.00

Adjusted R2 0.29 0.55 0.63 0.46 0.46 0.55
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result, Fig. 3 shows that exercising individuals exhibit negative sleep quantities compared to less active individu-
als in the same city, but they enjoy better sleep quality, yet this effect varied depending on the residing country.

To interpret these findings, we ran regression models to find the relationship between sleep and a unit increase 
in physical activity (refer to Table S8 in Supplementary Material). For instance, among U.S. residents who sleep 
for 8 h, an additional 1000 steps per day, on average, led to an increase in active sleep duration by 1.28 minutes. 
However, the total duration spent in bed (sleeping or not) decreased by 2.47 min, perhaps to accommodate the 
extra time devoted to physical activity. The Supplementary Material contains additional information on relation-
ships between sleep and physical activity, age, and gender relative to cultural dimensions.

Discussion
In this study, we utilized data from a single brand of wearable devices to assess sleep patterns in a large-scale 
sample of 30,082 individuals across 11 countries. These findings are discussed further below.

Data from wearables concur with previously known sleep patterns but reveal substantially 
delayed bedtimes and shorter sleep duration. While our data confirmed previously studied relation-
ships between bedtime, wake time, and sleep duration (Fig. 2A), the scale and international nature of the data 
also revealed new insights into sleep patterns. Sleep duration measured using wearable data is more strongly 
determined by bedtime than wake time, suggesting the influence of social obligations at night time, as seen in 
survey-based data in previous  studies5. Multiple epidemiological and cohort studies have shown that increasing 
age, in general, is associated with shorter sleep duration and earlier wake  times16. A reduction in total sleep dura-
tion of 0.5 min per year of age increase was seen in the large multicenter community Sleep Heart Health research 
(n = 2113)17. Another study revealed that a short sleep duration prevails in teenagers and those aged > 65  years7. 
Our data also show that age has a nonlinear relationship with sleep timing and duration (Fig. S1). The consist-
ency of findings relative to other methodologies indicates that wearable data serve as a valuable comparative tool 
for sleep studies, as first demonstrated  in11. Moreover, the wearable data also provide objective, quantitative data 
measurements.

Indeed, the wearable data indicated several visible differences in sleep patterns compared to studies based 
on self-reporting. For example, previous research found that women sleep more than men and generally have 
earlier bedtimes and later wake times until the age of  605,6. Meanwhile, our data shows the same patterns for 
bedtimes, but not for wake times, in female and male cohorts (Fig. 1E). Previous wearable studies also showed 
that women tend to self-report shorter and less efficient sleep in surveys compared to actigraphy  measurements6. 
Our wearable data also reported later bedtimes and wake times compared to survey-based studies in all countries 
that were examined using both approaches (see Fig. 4). The highest quantity of sleep among the 11 countries, 
according to wearable data, was found in Finland, where the median daily sleep time was 8 h. The reported sleep 
time in all other nations was 16–69 min shorter than it was in Finland (Table S1). Data from Japan showed the 

Figure 3.  Comparison of sleep between top 30% exercising and non-exercising individuals categorized by 
country. Propensity matching analysis was utilized to calculate the degree of influence of daily steps on each 
sleep factor. The x-axis represents the EATE (estimated average treatment effect) of average daily steps on two 
sleep dimensions: Sleep Quantity (RC1) and Sleep Quality (RC2). Across all target countries, the EATE values 
were negative for RC1 (indicating less sleep quantity) and positive for RC2 (indicating better sleep quality) for 
the active group (top 30% of users in terms of average daily steps) compared to the non-active group (bottom 
30% of users). This holds across countries but is prominent in, for example, the US and Finland as they are at the 
bottom of the quantity graph and the top of the quality graph.
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lowest median sleep duration, 6 h and 51 min, and the biggest difference between wearable-recorded and self-
reported sleep measurements.

Focusing on country-specific variations in Fig. 2B, we identified that three sleep measures substantially cor-
relate with log-GDP for the studied countries, a relationship that has not been extensively examined in previous 
studies. Specifically, bedtime was found to be delayed in higher-income countries, yet wake time was affected to 
a lesser degree. Higher-income countries also showed shorter average sleep durations. The relationship between 
GDP and sleep measures observed in our study could be driven by various mechanisms. One possibility is that 
higher-income countries may have more demanding work schedules or longer working hours, leading to delayed 
bedtimes and shorter sleep  durations20. Another potential factor is that higher-income countries may have greater 
access to technology and entertainment, resulting in later bedtimes and reduced sleep durations due to increased 
exposure to screens and  devices21.

According to the analysis, a handful of important social factors such as GDP, Individualism, and Uncertainty 
Avoidance are able to account for 63% of the differences in sleep quantity and 55% of the differences in sleep qual-
ity across different locations (refer to Table 1). This finding suggests that the amount and quality of sleep may be 
linked to the specific societal and cultural characteristics of the region where individuals reside. For example, con-
sidering the baseline models, living in higher GDP regions was associated with shorter sleep duration (p < 0.01) 
and lower sleep efficiency (p < 0.01). In contrast, considering the final StepAIC model, countries with higher 
individualism Index (IDV), which indicates the degree to which a culture reinforces individual achievement and 
relationships, had longer sleep duration (p < 0:01), which may be explained by an earlier bedtime schedule in such 
societies. Countries with high collectivism scores, i.e., low IDV values, may have stronger social obligations at 
night, potentially leading to shorter sleep duration. For instance, the cultural emphasis on social harmony and 
group obligations in collectivistic cultures may create stronger expectations for social engagement or activities 
at night, which can in turn impact individuals’ sleep behaviors. Individuals who work long hours or have rigid 
work schedules that extend into the evening may also have fewer opportunities for restful sleep. Spain and Japan 
were the two countries in the studied data that had the highest collectivism scores and the most delayed bedtime 
schedules (refer to Fig. S2 in Supplementary Material). In contrast, wake times were less divergent across the 
studied countries. Both high individualism (IDV) index and high uncertainty avoidance (UAI) index, which 
capture how regulated life is, were also associated with better sleep quality, but to a moderate degree (p < 0:1).

Previous survey-based studies have shown that bedtimes and wake times are strongly dependent on demo-
graphics such as age and gender. We confirmed the same correlations in Fig. S1. In addition, we newly explored 
whether these trends can be modified by individually configurable factors. One study conducted a sleep inter-
vention experiment in a poor urban area and showed that half-hour naps at the workplace can induce high-
quality sleep and therefore increase work productivity by an average of 2.3% throughout the  day22. Our analysis 
of individual factors also highlights, within societal boundaries, that increasing daily steps can further affect 
sleep (see Fig. 3). People who exercised had better sleep quality, and their total sleep duration was shorter than 
that of less active individuals. The effect of exercising and increased daily activity was more pronounced in 
some countries (e.g., the U.S., Finland) than in other countries (e.g., Austria). We also found that Japan was an 
exceptional case where additional daily steps did not lead to increased sleep quality. These findings suggest that 
the relationship between daily activity and sleep may be country-specific, and different exercise regimes may 
be more effective for some cultures than others. Further research could explore this possibility in more depth.

Theoretical implications. Our findings have three theoretical implications. First, we provide evidence 
that societal influences should be considered in modeling sleep. Previous literature showed physiological and 
environmental effects on sleep and suggested that individuals have unique internal time  signatures23. Along with 
recent literature that discusses social  influences2,5,6, our work offers strong evidence, supported with extensive 
data, that social constructs can explain the majority of variations in sleep patterns (Table 1).

The second theoretical implication is that our results bring clarity and structure to the numerous sleep metrics 
available in the  literature24–27. Upon analyzing seven metrics, we found that sleep patterns can largely be sum-
marized using two orthogonal dimensions (83.14% of the explained variability): Principal Component Analysis 
(PCA), based on our data, shows that sleep metrics can be classified into those reflecting quantity (i.e., sleep 
duration, sleep history, and MSFsc), and those reflecting quality (i.e., sleep efficiency, the K-hour deviation). 

Figure 4.  Wearable vs. survey-based studies. A comparison of average bedtime, wake time, and sleep duration 
based on data results obtained from six different sources across 15  countries4,5,12,18,19.
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These metrics were chosen based on their widespread use in sleep research and their relevance to capturing 
important aspects of sleep patterns.

The third theoretical implication comes from the limitations of existing surveys on sleep. Many studies have 
captured intended or desirable sleep behaviors, but very few have examined sleep in relation to participants’ 
other life signals. This limitation can be rectified by ensuring that surveys contain questions that give insight into 
activities related to well-being28,29. Surveys can include questions about expected work shift timing, the num-
ber of holidays, access to electronic devices in the bedroom, and cultural expectations about sleep. Our results 
suggest a tradeoff between one’s social life and sleep patterns. Societies that sacrifice a bit of sleep tend to show 
markers of better social life; they focus on the collective experience (Collectivism, i.e., smaller log-IDV values) 
by enjoying the moment and spontaneous lives (i.e., smaller Uncertainty Avoidance Index values). We also saw a 
poorer sleep tendency, both in terms of quantity and quality, in cities with higher GDP (i.e., larger social scales).

Practical implications. Our findings also have two practical implications. The first concerns multinational 
organizations. Based on our findings, international organizations may want to vary non-work activities and 
tailor them to local societal norms. For example, some societies emphasize individual work over sleep. This 
tendency could be counterbalanced by generous after-work activities that support productivity and, ultimately, 
well-being.

The second practical implication concerns sleep-tracking apps. These apps should consider not only “who 
the user is” (i.e., individual characteristics, including exercise, diet, nutrition, and quality of life) but also “where 
(s)he lives” (i.e., social influences and scales). For instance, there is a strong correlation between economic indi-
cators like GDP and the quantity of artificial light present at  night30. Since excessive exposure to artificial light 
may impact sleep and health, app designers may want to take these local factors into account in future iterations 
of their sleep  devices31. By implementing this information, an app could recommend optimal sleep patterns for 
users that, for example, do not compromise an individual’s social life.

Limitations and future work. This work comes with several limitations. One is measurement accuracy 
in sensing sleep. Although wearable devices are advancing and are widely used, the gold standard for measuring 
activity signals consists of less ubiquitous actigraph sensors or  polysomnography32. Such direct measurement 
methods can detect variant sleep patterns. Other less invasive methods, like survey-based research, suffer from 
reporting biases. In fact, our data show a consistent deviation between sleep data obtained from surveys and 
wearable devices. Figure 4 shows average sleep schedules obtained from six different sources across 15 coun-
tries (see Table S3 for more detailed statistics), where bars indicate time frames when individuals went to bed 
and woke up on average. In the surveys, users reported going to bed earlier at night and waking up earlier in 
the morning compared to users in wearable-based studies across multiple data sources. To increase accuracy, 
researchers can make existing wearables ‘smarter’ with on-device machine  learning33 or make existing high-
precision devices less invasive by miniaturizing  them34. Furthermore, deep-learning algorithms could be used to 
fill in missing data points and prune possible  outliers24.

Another limitation concerns the control variables and generalizability. While our study controlled for two 
common factors directly related to sleep (i.e., overall socioeconomic status of a city and median age), future 
studies could control for additional variables (e.g., gender or income) whenever available. Previous research 
emphasized the potential for interaction between, as well as the mutual influence of, genetics and  culture35. As 
noted by Ong et al.12 it is also plausible that genetic variation accounts for cultural disparities in the sleep habits 
of users. For example, it has been hypothesized that East Asians may have genetic variations that give them 
resilience to sleep  deprivation36. By examining how genetic information affects these disparities, future research 
may reveal the mechanisms underlying differences in sleep patterns across ethnic groups.

Also, our findings are limited to countries with relatively higher GDP values (i.e., at least $252 billion or within 
the top 42 countries as of 2023) and may not be generalizable to more socio-economically deprived countries. 
Furthermore, tech-savvy individuals will tend to wear high-end tracking devices, leading to potential population 
bias in wearable-based studies. Despite this potential homogeneity in our sample, there were still stark differences 
in sleep quality that were explained by social constructs.

Ethical considerations. This study adhered to the General Data Protection Regulation (GDPR) in terms 
of data collection, processing, and storage. The authors had no access to personally identifiable information of 
individuals in the studied dataset. All data were analyzed at the aggregate level (i.e., cities, countries, and groups 
by sleep patterns).

Materials and methods
Data collection. As consumer-grade wearables are now fully equipped with body sensors, it is possible 
to gather measures related to an individual’s well-being (e.g., physical activity or sleep) at a large  scale24,25. We 
obtained sleep readings from commercial wearable trackers worn by 30,082 unique users (55% male and 42 years 
old median age with a standard deviation of 12 years) between 2014 and 2017 across 19 major cities and capitals 
in the countries with GDP per capita rank above 34 and GDP above 42 [https:// www. world omete rs. info/ gdp/ 
gdp- by- count ry/], spanning three continents. The city with the lowest penetration had 495 users (median = 1043 
and mean = 1588). In total, we collected 28.5 million sleep measurements. The device inferred sleep based on a 
combination of sensors and reported the measurements as presented in Table 2.

Sleep measures. While sleep labs are the gold standard for obtaining objective sleep measurements in a 
clinical setting via advanced medical equipment like polysomnography and accelerometers, studies have shown 

https://www.worldometers.info/gdp/gdp-by-country/
https://www.worldometers.info/gdp/gdp-by-country/
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that alternative, less expensive, and scalable solutions like using consumer-grade wearable devices can be a reli-
able way to study  sleep18,26. The discussion of studies that compare wearable device measurement accuracy to 
gold standard actigraphy can be found in the Supplementary Material. In this study, sleep measures were col-
lected using consumer-grade wrist-worn devices serviced by Nokia. All the measurements in our dataset were 
collected by the same version and type of wearable. These devices offer sleep-tracking functionality that continu-
ously collects movement data through an accelerometer, aggregates it at a minute-level granularity, and uses it as 
input for a proprietary algorithm to estimate whether the person is sleeping. The above measurements in Table 2, 
logged in units of minutes, can be used to model conventional sleep metrics, including  MSFsc27, hours overslept 
on free days or non-workdays37, the K-hour  deviation38, and sleep  efficiency39:

Sleep duration: The aggregate time spent in bed, whether asleep or awake. This metric is often used as a 
proxy for the quantity of rest that people get at  night7,40,41. The higher its value, the more time people sleep.

Sleep history: A seven-day average sleep duration that gives higher weights to recent days. It captures an 
aggregate measure of sleep behavior using the following formula, where i is the ith day in the past based on 
the target date. Note that sleep duration is weighted by a decaying exponential with a time constant of 7  days42, 
indicating that recent measurements have greater importance. The calculation of Sleep history is normalized 
such that weights sum to one, making the metric more interpretable as a weighted average of sleep duration 
over the past  week43. The higher its value, the more time people slept over the past week.

Hours Overslept: Additional hours of sleep on free days compared to weekdays. Hours overslept on free days 
can serve as a proxy for sleep debt, as it is a cumulative effect of not getting enough  sleep37. When people need 
to wake up earlier than their normal biological time and subsequently oversleep on free days to compensate 
for the accumulated sleep debt during the  week44,45. The higher its value, the more people sleep on free days.

,where SDf  is the average sleep duration on free days per week and SDw is the average sleep duration on  workdays4. 
In the current work, we set Sunday–Thursday as work nights and Friday–Saturday as free nights according to 
 literature4.

MSFsc: This metric is used to classify chronotypes, which refer to an individual’s sleep pattern  preference27. 
It is calculated by determining the midpoint of sleep on free days and adjusting it based on the individual’s 
chronotype. To calculate the MSFsc, we first calculate Hours Overslept on free days which represent the num-
ber of extra hours an individual sleeps on her free days compared to her average sleep hours on workdays, 
as explained above. Once Hours Overslept is calculated, we then compute the MSFsc using the following 
 formula4:

Here, MSF stands for the midpoint of sleep on free days, while SC represents the correction of sleep debt on 
workdays. The higher the value of MSFsc, the later an individual’s midpoint of sleep on free days becomes. In 
other words, a higher MSFsc value indicates a preference for staying up later and waking up later on free days.
K-hour deviation: This metric is inspired by the concept of recommended sleep duration in society and is 
computed as the time deviation from k hours of duration in bed. This metric captures the extent to which 
people deviate from the recommended hours of rest (i.e., 7 or 8). The higher its value, the greater the diver-
gence of people’s daily sleep time from the recommended sleep  duration38,46,47. In this study, we provide the 
findings for the more typical k value of  eight48,49 (see Supplementary Material for results with other k values).

Sleep duration = Wake time−Bedtime

Sleep history =
1

∑
7

n=1
e−

n
7

7∑

i=1

e−
i
7 ∗ sleep durationi

Hours Overslept = SDf −
(
5 ∗ SDw + 2 ∗ SDf

)
/7

MSFsc = MSF − 0.5 ∗Hours Overslept

Table 2.  Descriptive statistics of the sleep readings obtained from wearable devices.

Aggregated as the average by city

Variable Meaning Median Mean SD

Bedtime (unit: timestamp) The estimated time at which a user gets into bed for sleep 23:39:00 23:55:12 02:18:36

Wake time (timestamp) The estimated time a user gets out of bed after sleep 7:22:12 07:37:48 02:12:36

Sleep duration (h, min) The aggregate time spent in bed (see Sleep measures) 6 h 54 min 7 h 42 min 12 min

Falling-asleep-duration (min) The recorded time before a user falls asleep once in bed 6 min 6 min 28 min

Waking-up-duration (min) The recorded time needed for a user to get out of bed after waking up 0 min 8 min 15 min

Mid-awake-duration (min) The recorded time a user was awake while in bed 22 min 35 min 64 min
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Efficiency: The ratio of total hours slept over the total in-bed duration, as used in previous  research6,37,50. This 
metric is used to represent sleep quality. Sleep efficiency can be measured by both surveys, as in Jenkins Sleep 
Problems Scale, or by sensors on wearable devices. The higher its value, the more quality sleep people acquire.

Social constructs. To address the effect of culture on sleep quantity and quality, we examined how these 
measures varied according to popular social constructs. From Hofstede’s insights portal [Hofstede’s cultural 
dimensions: https:// www. hofst ede- insig hts. com/ produ ct/ compa re- count ries], we obtained data in four dimen-
sions for the 19 cities examined in the current study. Since some measures were skewed, we log-transformed 
these values if they were not normally distributed.

• The Individualism (IDV) dimension captures the degree to which a culture reinforces individual achievement 
and relationships. Greater values indicate more Individualism.

• The Uncertainty Avoidance (UAI) dimension captures the degree to which uncertain situations make mem-
bers of a culture feel threatened. Greater values indicate a more regulated life.

• The Long-term Orientation (LTO) dimension captures the extent to which a culture believes in a stable soci-
ety based on family and where various behaviors are expected. Greater values indicate long-term-oriented 
societies that value self-development.

• The Indulgence (IND) dimension captures the degree to which a society allows relatively free gratification 
of basic and natural human drivers related to enjoying life and having fun. The contrasting idea is restraint, 
which stands for a society that suppresses gratification of needs and regulates it by means of strict social 
norms.

We also considered the Gross domestic product (GDP) as a commonly used socio-economic factor that 
reflects the wealth of an area.

• log-GDP: For each city, we collected yearly GDP data from the OECD regional statistics, then averaged 
and log-transformed it using the natural logarithm due to its skewed distribution (log-GDP: min = 11.31, 
max = 14.38, median = 12.65, mean = 12.74, and SD = 0.95).

Principal component analysis (PCA) for dimension reduction of sleep traits. For each user in our 
dataset, we computed mean values of five sleep metrics: sleep duration, sleep history, MSFsc, K-hour deviation, 
and sleep efficiency. When computing these sleep features, the number of target users decreased to 23,812 as 
we discarded user data if data points on free days and workdays fell below a threshold: every week in our data 
contained at least one free day and two workdays. While the five sleep measures reflected various sleep aspects, 
some captured similar concepts. With the sleep records of thousands of users at hand, we could assess which fun-
damental dimensions captured different aspects of sleep patterns in a data-driven fashion. We did so by running 
a principal component analysis (PCA) to reduce the dimensionality of our sleep predictors (see Table S5, which 
lists the PCA loading matrix). We found that the first two principal components had eigenvalues larger than one 
(2.98 and 1.18, respectively) and, as depicted in Fig. S3(B), accounted for 83.14% of the total variance, which 
is high, considering that 60% variance is typically deemed satisfactory in social  sciences51. The first principal 
component captured aspects of sleep related to quantity (i.e., how much the user slept). The second component 
was related to sleep quality features (i.e., how well the user slept). Thus, we named these two dimensions Sleep 
Quantity and Sleep Quality, respectively (see Text S2 for more details).

Linear regressions. To examine the correlation between sleep dimensions and popular social constructs at 
a city-specific level, linear regression models were used after identifying two sleep dimensions using principal 
component analysis (PCA). Six linear regression models (M1 to M6) were used in this study. The baseline mod-
els (M1 and M4) included only log-GDP and controlled for the median age of users. The full models (M2 and 
M5) incorporated all social constructs, while the final compact models (M3 and M6) contained only significant 
factors selected through the StepAIC feature selection method. The StepAIC is a feature selection method used 
in linear regression analysis [https:// www. rdocu menta tion. org/ packa ges/ MASS/ versi ons/7. 3- 58.3/ topics/ stepA 
IC]. It is based on the Akaike Information Criterion (AIC), which quantifies the goodness of fit of a model while 
penalizing the number of variables included. StepAIC is a backward selection method that starts with the full 
model and iteratively removes the variable with the least significant contribution until a model with the best AIC 
value is obtained. This method helps to simplify the model by selecting only the most significant variables while 
avoiding overfitting. The goal of these models was to explain the effect of key societal factors on sleep measures.

Propensity score matching (PSM) analysis. PSM is a method used to test the causal effect by identify-
ing pairs of treatment and control units that are matched based on their propensity  scores52. In our case, we used 
PSM to quantify the effect of physical activity on two sleep dimensions: sleep quantity and sleep quality, at an 
aggregated user level. We chose average daily steps as a proxy to gauge the degree of daily activity.

k−hour deviation =

∣∣Sleep duration− k
∣∣

Efficiency =
Hours Slept

In−bed Duration

https://www.hofstede-insights.com/product/compare-countries
https://www.rdocumentation.org/packages/MASS/versions/7.3-58.3/topics/stepAIC
https://www.rdocumentation.org/packages/MASS/versions/7.3-58.3/topics/stepAIC
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The propensity scores are the conditional probabilities of being assigned to the treatment group, given some 
vector of covariates. In our analysis, the treatment group consisted of users who were in the top one-third of their 
country in terms of their average daily steps (i.e., more active users). Accordingly, the control group consiseds 
of the bottom one-third of users (i.e., less active users). Three covariates were used for the propensity score 
calculations: age, BMI, and wearable data recording ratio. [Wearable data recording ratio was calculated as the 
total number of daily records per period of using a wearable device in days. This measure addresses a number 
of missing data points as well as the persistence of the users in using the wearables.] The propensity scores were 
calculated using logistic regression with Lasso regularization (ƛ = 0.001).

In the next step, for each unit in the treatment group, we matched the five (as a hyperparameter) most 
similar units from the control group based on the propensity scores by the K-Nearest Neighbor algorithm. The 
similarity of neighbors was calculated using Mahalanobis distance, which normalizes the distance between 
two points in a multivariate space. To measure the effect of activity on the sleep dimensions, we calculated the 
estimated average treatment effect (EATE) by the following  formula53, where T is the treatment group, Mt is the 
corresponding matched set from the control group, and y is the desired sleep dimension (PCA coordinates of 
sleep quantity or sleep quality). Nt is the number of treatment units, and NMt is the size of matched control sets 
(in our case, NMt = 5):

Data availability
The data was collected at a large scale from Nokia wearable devices in the wild between 2014 and 2017. Consent 
was obtained from the users to access their anonymized records. Upon request, the corresponding authors can 
provide the aggregate city-level sleep metrics.
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