
LotusNet: tunable privacy for distributed online social

network services

Luca Maria Aiello, Giancarlo Ruffo
Computer Science Department - Università degli Studi di Torino

Corso Svizzera 185, 10149 Turin, Italy
{aiello,ruffo}@di.unito.it

∗ ∗ ∗
PREPRINT

Abstract

The evolution of the role of online social networks in the Web has led to a colli-
sion between private, public and commercial spheres that have been inevitably
connected together in social networking services since their beginning. The
growing awareness on the opaque data management operated by many providers
reveals that a privacy-aware service that protects user information from privacy
leaks would be very attractive for a consistent portion of users. In order to
meet this need we propose LotusNet, a framework for the development of social
network services relying on a peer-to-peer paradigm which supports strong user
authentication. We tackle the trade-off problem between security, privacy and
services in distributed social networks by providing the users the possibility to
tune their privacy settings through a very flexible and fine-grained access con-
trol system. Moreover, our architecture is provided with a powerful suite of
high-level services that greatly facilitates custom application development and
mash up.

Keywords: social networks, information leakage, privacy, peer-to-peer, DHT,
access control, reputation, folksonomies

1. Introduction

The Social Web is probably the most pervasive and ubiquitous effect of the
Web 2.0 phenomenon. Today, Online Social Networks (OSNs) have become
one of the main means of interaction and information dissemination for Web
users [1, 2]. Most of the modern Social Network Services (SNSs) are based on
a collaborative paradigm, where content that is published and shared between
participants is produced by the users themselves. Such aggregation of personal
and possibly sensitive information belonging to several million of users is the
real wealth owned by today’s major OSN providers (e.g., Facebook, MySpace),
that offer free registration to their social platform in exchange for a free access
to user data.

Preprint submitted to Computer Communications December 19, 2010

Entrusting such a high volume of information to an external provider involves
many hazards that can seriously undermine the privacy of OSNs users. Of
course, the possibility of an undesired information mining performed by the
provider is one of the risks, but the most alarming threat to privacy concerns
the leakage of the personal data from the context in which they were originally
defined [3]. In fact, very often the content management policies adopted by
SNS providers allow third parties to exploit the OSN user information for many
different purposes (e.g., faceted advertising) without any awareness of the user.
Another dangerous implication of leakage is the information linkage [4], i.e.,
the possibility for an unauthorized third party to aggregate data from different
social data centers in order to infer non-expressed information about the identity
or the behavior of a user. In Facebook, the brand new instant-personalization
service [5] and the access policies to personal content for third-party applications
[6] are evident examples of such possibility.

Therefore, the actual risk is that users lose completely the control over the
diffusion of their own information. Even if most of existent SNSs offer the
possibility to change some privacy settings or profile visibility options, it is often
impossible to fully customize settings to obtain appropriate privacy policies.
Furthermore, the general trend followed by providers is to relax more and more
the privacy constraints of the default user settings (e.g., [7]).

Although, until the recent past, users could be misinformed about who actu-
ally has the grant to access their online information [8], the awareness on SNSs
privacy leaks is rapidly growing and spreading among the OSN users, thanks
also to the relevance attributed by the media to this topic. Recently, also many
voluntary protest initiatives are blooming on the Web [9, 10, 11], reflecting the
fact that the user demand for privacy is becoming stronger.

For these reasons, to restore the control of the users on their own infor-
mation has become a major challenge for the research community today [12].
Replacing centralized SNS providers with peer-to-peer (p2p) services [12, 13],
where no central authority can claim the right to exploit the data, is a proposal
that is achieving widespread success among the scientific community. However,
implementing complex SNSs on purely decentralized layers does not guarantee
privacy per se and introduces several practical problems that do not occur in
centralized implementations.

First, widespread p2p systems like structured overlay networks suffer from
many security issues [14] that can considerably undermine the stability of the
network, and of course of the applications layered above. This point is even
more important for social applications, that usually have high robustness re-
quirements motivated by the high-quality user experience they must offer. Sec-
ond, in a p2p open environment data can be potentially accessed by everyone.
For this reason, proper access control policies should be implemented in order to
offer a full customizability of the level of data privacy. Last, p2p overlays offer a
very restricted and low-level API. Since social applications usually require high
level primitives like inter-application notifications or identity management func-
tions, the distributed social layer should expose a suite of higher-level services
that prevent an excessive overhead for the application development task.

2

To satisfy simultaneously security, privacy, and quality of service require-
ments is the crucial challenge in the research on distributed OSNs, especially
because, if taken to the extremes, such three requirements tend to conflict with
each other. Our contribution to this field is the definition of LotusNet, a frame-
work for the implementation of p2p SNSs based on a Distributed Hash Table
(DHT) system. LotusNet uses strong authentication of peers at overlay level
to provide security and stability to social applications, high level services, and
fine-grained discretionary access control to private resources. Furthermore, Lo-
tusNet does not impose a very high, fixed privacy level to other requirements’
detriment, but allows the users to tune the trade-off between privacy and ser-
vices which is most favorable to them. Finally, our approach allows an easy
application mash up and relieves the applications from many service implemen-
tation details, thus making their development very quick and easy.

Previous proposals (see Section 2) focus mainly on the problem of access
control or on single social services like contacts discovery. Compared to other
p2p OSNs, our framework is wider because it considers security, privacy and
services as a whole and the trade-off between them, providing a complete and
coherent solution without the imposition of any constraint or assumption on the
nature of applications or on the structure of the social network.

The remainder of the paper is structured as follows. Section 2 presents an
overview on previous works aimed at privacy preservation in OSNs. Section 3
proposes a general-purpose OSN model and lists the requirements we want to
assure in such system. In Section 4 the main features of our identity-aware
DHT are exposed. Sections 5 and 6 are the core of the work and defines the
architectural modules that compose the LotusNet architecture. Section 7 in-
spect the effects of a crawling attack on LotusNet and proposes some additional
countermeasures to preserve user information privacy. Conclusions are given in
Section 8.

2. Related work

The high practical relevance of the privacy issues in OSNs has recently
strongly attracted the interest of the research community. Broadly, the works
published in these last few years can be classified into two main currents. The
first focuses on the design of fully decentralized privacy-aware OSNs. Here, be-
sides dealing with information confidentiality and access control, authors try to
propose effective solutions to implement the main services provided by classic
server-based architectures (e.g., data availability) on the distributed layer.

Contrarily to the p2p-based proposals, the other current addressed the pri-
vacy goal assuming the existence of a centralized content provider, but proposing
workarounds to avoid undesirable information mining or defining guidelines to
enhance the privacy services offered by existent providers. This choice is moti-
vated by the advantage in preserving the quality of service offered by a classic
client-server model.

3

2.1. Peer-to-peer OSNs

Some research papers about the implementation of social application on p2p
layers were made even before the viral spreading of OSNs (e.g., [15]), but of
course the idea of using a p2p framework to solve ONSs privacy issues is very
recent [13, 12].

The PeerSon1 system [16] is one of the first p2p design for a OSN. The goal
of user information privacy is achieved through symmetric encryption of content
stored in a DHT. The p2p network serves mainly as a lookup service: once the
two endpoints’ contacts have been retrieved from the DHT, direct connections
are established. When a friend is offline, update notifications are managed asyn-
chronously through the DHT using a pull approach. Full decentralization and
encryption prevent, respectively, the “Big Brother” effect and network crawling
activities aimed to data collection. However, advanced access control features
like highly dynamic group membership are not taken into account.

The Safebook2 p2p OSN [17, 18, 19] focuses on resource availability as well as
content privacy and end-to-end communications confidentiality. It combines a
DHT with another p2p network called Matryoshka. Peers in the Matryoshka are
connected by trust bonds: user items are stored at highly trusted neighbors. The
DHT is used to store the contacts of the Matryoshka members and encryption is
used to preserve content privacy. The Safebook design provides also the presence
of a trusted, offline identification service to avoid Sybil attacks.

A similar approach is adopted in [20]. Here, the problem of content avail-
ability on fully decentralized social networks is faced with a p2p storage model
based on the concept of trust. Items replicas are stored at a set of nodes trusted
by the content owner, called Trusted Proxy Set (TPS). The initial selection of
TPS nodes and their churn dynamics are handled accordingly to the geograph-
ical location of nodes, in order to place the data as close as possible to nodes
that often access the content. References to TPS nodes are published on a DHT
layer. Data on the DHT are indexed with a k-anonymization technique to grant
both owner and content privacy.

In [21] authors propose a DHT-based storage with access control capabilities
for social shared resources. Encrypted items are published together with several
copies of the secret key; each copy is encrypted with the key of a user who have
access permission for that resource. A drawback of this solution is that when
the access control list of a specific content must be changed, a new updated
item has to be built and stored again. User registration phase and secure p2p
communications are inspected as well.

Participants discovery in fully decentralized OSN is discussed in [22]. Au-
thors define a gossip protocol, implemented on the Tribler network [23], for user
discovery. When the target friend is unavailable and the search initiator goes
offline, a set of online helper peers is delegated to perform a periodic probing
activity aimed at the retrieval of the searched peer’s contact.

1http://www.peerson.net
2http://lnx.0131mmp.com/Safebook site

4

Vis-a-Vis [24] is a scheme for decentralized OSN that targets high content
availability. Each user stores her personal data in a Virtual Individual Server
(VIS) that is kept on the local user’s desktop and replicated on a cloud in-
frastructure. When the desktop is offline, the cloud service is activated and
the availability is not interrupted. Further replicas of the content are hosted
among the VISes of the social contacts, that are connected together through a
p2p overlay network. However, the rental cost of the cloud service makes this
proposal not very practicable.

2.2. Privacy solutions for centralized OSNs

NOYB3 [25] is an encryption tool based on a substitution cipher, useful to
hide the real user’s profile information from the eyes of the data center. In
fact, the provider is prevented from telling fake encrypted data from valid in-
formation. A secret key shared between NOYB groups, together with a public
dictionary, stored by a Trusted Third Party, are used for encryption and de-
cryption. A proof-of-concept sketched on the Facebook case is presented. This
approach applies only to textual fields and it is not suitable for any other kind
of sensitive information, like social connections, group affiliations, photos, etc.

Lockr4, a discretionary access control system adaptable to centralized OSNs
as well as to the BitTorrent streaming system, is presented in [26]. The idea is to
decouple the social information (i.e., the contact list) from the content the users
share with others. In this approach, the list of friends is not explicitly stored
anywhere; instead, every user distributes a signed social attestation to each of
her social contacts; only users that have a proper social attestation are allowed to
access the resources. In order to avoid replay attacks, the attestation is verified
through a zero-knowledge protocol. In a centralized setting, a dedicated server
is responsible for the attestation validity check. In BitTorrent, thanks to the
introduction of a signed social torrent, attestation verification can be managed
in a p2p manner.

FlyByNight [27] is another attempt to mitigate privacy risks in OSNs by
introducing a privacy-aware architecture that can be integrated with existing
centralized providers. Also here, cryptography is used to conceal content to the
provider; an external server is used as key repository.

Persona [28] is a privacy-aware OSN where user data are kept into a central-
ized untrusted storage. Information privacy is accomplished using encryption.
In particular, Attribute Based Encryption is used to flexibly manage group
membership and revocation of privileges. A possible integration with existing
OSNs is drawn.

A similar approach is described in [29], where authors propose a client-server
model with untrusted server as a privacy-aware OSN architecture. In this work,
the server is used as a public storage without any access control policy (it offers
only simple put and get primitives). The task of preserving the privacy of

3http://adresearch.mpi-sws.org/noyb.html
4http://www.lockr.org

5

user information is delegated to clients that upload on the server encrypted and
equally-sized data blocks in order to hide both resources’ content and size. Only
users with proper keys can access to the items. Identity verification and key
distribution are managed in a p2p fashion.

In [6], authors address the privacy problems related to the disclosure of per-
sonal information through APIs provided by online social services like Facebook
and OpenSocial. They propose an alternative social platform design that pre-
vents third party applications from obtaining real user data. They introduce
a privacy-by-proxy anonymization technique that do not reveal any non-public
information to external applications or to the application users that are not
granted with the proper privileges. This goal is achieved by customizing the
interaction protocol between the social service provider and the applications.

In [30], authors propose a machine learning methodology to infer resources
access control policies to be applied to the set of social contacts, based on a
small learning set of representative friends for which access control settings are
actively specified by the user. The position of a friend on a specific network
cluster of the friendship graph is used together with her profile information as
training feature for the classifier.

2.3. Our direction

In this work, we recur to the p2p paradigm to arrange a privacy-aware so-
lution for OSNs. This choice is motivated by several reasons. First, we believe
that applying a blurring mask to the user data layer in order to hide sensi-
tive information stored in a centralized environment is a solution that would be
not accepted by the service providers themselves, whose terms of service often
impose very strict conditions on information inserted by users (e.g., [31]). Fur-
thermore, the implementation of privacy-aware solutions that imply to build up
a centralized infrastructure for data management would be too costly if a very
large audience must be supported. Conversely, a p2p solution can be realized
with negligible infrastructural cost and offers a more transparent privacy service
due to its intrinsic distributed nature.

In a previous work, we sketched the fundamental traits of a DHT-based
OSN [32]. In the present paper we extend it going deeper into the architectural
details and adding new significant features to the architectural modules. In
particular, we define an additional layer of core services layered on the DHT
node that include a new notification service. As a result, we present an extended
API that can meet the most of privacy and functional requirements that social
applications have.

3. OSN requirements

A SNS can be defined, in its most general meaning, as a customizable suite
of inter-operable, identity-based applications. In this context, every user com-
poses its own combination of applicative modules, or widgets, into a customized

6

application suite, where every widget can share data with other possibly het-
erogeneous, widgets running locally or remotely. Note that this is a very gen-
eral model because no assumption is made about the nature of widgets or the
structure of exchanged data, and both synchronous and asynchronous commu-
nications are allowed. Given this general definition, we inspect a set of desired
privacy, security, and service requirements that are common to a very wide
range of social widgets. Such requirements are at the basis of the architectural
design of our distributed social framework.

3.1. Privacy requirements

Confidentiality. Any kind of content created by any widget should be ac-
cessible only to those authorized to have access. This property has a wide
meaning. First, it implies the definition of access control policies that allow a
flexible and fine-grained specification of grants. Furthermore, in a OSN context,
fully-customizable confidentiality is the most effective patch to stop information
leakage.

Ownership privacy. The creator or the owner of a content should be enabled
to not disclose the ownership information to other users. The relational tie
between a user and a content of a certain type could be in fact a very valuable
information, potentially detrimental to the user privacy.

Social interactions privacy. Social ties and the data flowing on them can
tell much information on the behavior of individuals and on the dynamics of
groups in a networked environment [33]. For this reason, a user should be able
to arbitrarily hide the interaction between local and remote widgets.

Activity privacy. The type and number of widgets that compose a user
application suite must be considered sensitive user information, because they
partly reveal the nature of user activity on the network. Flexible privacy settings
should be provided to tune the exposure of the application suite composition to
the public.

3.2. Security requirements

Channel authentication. Communication channels should be two-way au-
thenticated, so that both the initiator and the recipient can check the identity
of the partner. Unauthenticated channels are potentially vulnerable to social
engineering attacks. Phishing aimed to sensitive data collection [34], for exam-
ple, is mainly based on persuading the target user that the attacker is a known
and trusted entity. Strong authentication, combined with an educated behavior
of users, greatly reduces also the risk of identity theft, that is one of the main
issues in today’s Web-based OSNs [35].

Data integrity and authenticity. Information that is published by widgets
and exchanged with remote entities must not be modifiable by any non-allowed
user. The genuineness of content should also be assured through ownership
verifiability, to avoid making wrong associations between a content and a user
that is not its owner.

7

Non-repudiation. Users are fully responsible of their actions on the network.
In many distributed services, the agreement on social or micro-economical trans-
actions passes through messages that are exchanged by the parties involved. The
property of non-repudiation of the content’s ownership lays the foundations for
traceability of user actions and is therefore a deterrent to frauds, to the spread-
ing of false information on the network, and to spamming activities.

3.3. Service requirements

Content availability. Access to data should not be conditioned by the con-
nection status of the owner. Even when the owner is offline, users with a proper
permission should be able to access the data.

Flexible communications. End-to-end communication can be synchronous
or asynchronous. A widget should be able to listen for live notifications and to
recover messages that were sent during its offline time.

Easy integration. The mash up, namely the composition of existing building-
block services into more complex applications, is at the basis of the Web 2.0
paradigm. For this reason, the interoperability between social applications
should be facilitated as much as possible.

Search facilities. Users are interested in acquiring new contacts and in ex-
ploring the resources published in the OSN. Proper search engines should allow
to find the desired items, but in compliance with privacy requirements stated
above, if possible.

Reputation management. Collaborative environment like OSNs can often
rely on reputation and trust notions to balance social interactions or nego-
tiations. For this reason, widgets should be provided with common tools to
quantitatively express their perceived reputation of other participants and to
convey their reputation beliefs to remote widgets.

3.4. The wall, the fence, the garden

Privacy, security, and service requirements (summarized in Table 1) lay on
three orthogonal axes; an ideal OSN platform should preferably meet at the
same time all the requirements that are listed in the previous sections, thus
maximizing the level of fulfillment for each of the three properties. However, it
is clear that such peak cannot be reached due to the partial conflict between
some requirements that lays on different axes. For instance, security properties
like traceability and authentication may often conflict with ownership and social
interaction privacy, which can in turn affect the effectiveness of search facilities
or the significance of a reputation system.

To effectively depict this trade-off we can use a walled garden metaphor.
Users in OSNs are like gardeners who work for their plants and flowers to thrive.
As long as the garden is open to the external environment it receives the benefit
of sun and rain and new seeds can root on its ground, carried by the wind or by
other gardeners visiting. But, without any shelter, the garden also suffers from
the bad weather and can fall prey to vandals and thieves. Gardeners can rise
fences to turn away malicious visitors and walls to protect the garden from the

8

Privacy Security Services

(Wall) (Fence) (Garden)
Confidentiality Channel authentication Content availability1

Ownership privacy Integrity and authenticity Flexible communications2,3

Interaction privacy Non-repudiation Easy integration2

Activity privacy Search facilities4

Reputation management 5

Sections 5.2, 5.3 Section 4.1 Sections 16.4, 25.1, 36.1, 46.2, 56.3

Table 1: Summary of the social network service requirements, partitioned in the three main
categories. In the bottom row we report the Sections of the paper in which we discuss the
fulfillment of such requirements in LotusNet.

weather, but high fences (security policies) prevent good visitors to easily access
to the garden (services and user resources) and thick walls (privacy settings)
can deprive the flowers of light and water; this is the gardener’s dilemma.

LotusNet is designed to reach a good trade-off between the three aspects.
LotusNet is based on secure interaction protocols and enables a set of powerful
services, but its architecture is not bound to a single system-defined privacy
setting. Instead, LoutsNet provides the users with the ability to tune their
own privacy configuration with fine granularity over a range of possible privacy
policies, thus giving wide freedom to the user to open doors and windows in
their own privacy wall.

4. DHT layer

We base the architecture of our social framework on a single p2p network and
in particular on a Distributed Hash Table. This choice is motivated mainly by
the good properties that DHTs offer [36]. Extreme scalability, maintenance and
dissemination of stored content, resistance to high churn, efficiency in locating
rare objects and simplicity of interface are very important qualities that these
platforms offer in a transparent way. Furthermore, given that the main task of
the social widgets is to share and collect data, a distributed storage is one of
the simplest means to implement this service.

The DHT we use is called Likir [37], a customized version of Kademlia
[38]. Likir enhances the simple and efficient Kademlia protocol with strong
identity management at overlay level: as well as a numeric identifier, Likir
nodes are marked with a user identity and interactions between peers are two-
way authenticated. In the following, we report a quick overview on its features
and on the interface it exposes to applications.

4.1. Secure design: raise the fences

Likir can be used basically like any other DHT except for the fact that
users must fulfill a preliminary user registration procedure in order to receive a
certified identifier for their DHT node. Likir architecture provides a Certification
Service (CS) for this purpose.

9

We assume that each user has a pair of RSA keys and an OpenId account.
Before the very first bootstrap, a user contacts the CS through a web service
and sends her public key and OpenId using a simple submission form. Once the
OpenId is validated, the CS produces a signed certificate containing the user’s
OpenId and public key, an expiration time and a random 160bit string that will
represent the Kademlia identifier of the DHT node. We call this certificate a
LikirId.

Once a user has obtained her LikirId, it does not need to contact the CS

until its expiration. If the CS goes offline, the user registration service becomes
unavailable but the network activities are not affected at all, because the users
that previously obtained their LikirId can join the overlay without querying
the CS anymore. Since the expiration time can be chosen to last even many
years, we can state that the CS is not a single point of failure of the system. In
our design, the CS is implemented with a centralized server.

Once the LikirId is obtained, the node can join the network by perform-
ing the bootstrap procedure. The Likir overlay protocol is a customization of
the Kademlia Remote Procedure Calls with an additional secure exchange of
LikirIds for authentication purposes. We refer to [37] for the details of the pro-
tocol and for considerations on its overhead sustainability, while here we focus
only on its main properties.

First, overlay communications are two-way authenticated. Authentication
plus the binding of the user identity with a fixed and random Kademlia ID has
a very high impact on the security of the p2p network. It has long been known
[39] that most of the security attacks to structured p2p systems leverage the fact
that overlay nodes are marked with very loose identities, i.e., numeric identifiers
that are chosen arbitrarily by peers at each bootstrap. Loose identities allow
attackers to position Sybil nodes [40] into specific portions of the DHT. Con-
trolling strategically positioned nodes allows to eavesdrop p2p traffic directed to
entire region of the DHT keyspace, for censorship or denial of services purposes
[41]. Also unauthenticated channels, that are unavoidable if weak identities are
assigned to overlay participants, make the routing tables vulnerable to the in-
jection of fake entries [41]. In Likir, authentication plus the binding of the user
identity with a fixed and random Kademlia ID effectively counteracts this kind
of threats, thus making the p2p layer more robust.

The second Likir’s main property is the verifiable ownership of content.
This is achieved attaching certificates, signed by the owner, to every content
published on the DHT; since the owner identity and the hash of the resource
are included in the certificate, resource integrity and ownership verifiability are
assured. This feature is the main building block for identity-centered services
on the DHT because it allows a secure identity-based resource retrieval. Please
note that the authenticated interaction protocol and the certificates allow to
satisfy at overlay level all the security properties defined in Section 3.2.

As final remark, it is very important to notice that, even if a p2p implemen-
tation of the CS would be feasible [42], the presence of a centralized service for
certification is not in contrast to our decentralized vision of the OSN, basically
because the CS has the same capability to observe the network of a simple Likir

10

node. The CS does not know any information about the subscribing users but
the fact that they participate to the Likir service; as explained is Section 5.2,
even simple Likir nodes can easily determine whether a user is on the Likir
network. This is a very minimal information which cannot tell anything about
the user’s activity, or the resources she owns, or the social contacts she has.
Knowing the binding between the user identity (the OpenId) and the corre-
sponding DHT address (the Kademlia ID) does not help in any way to monitor
the incoming/outgoing network traffic of that user. If the CS falls in untrusted
hands, the attacker cannot disclose any private user information and not even
the list of nodes in the network because, in principle, the CS is not even re-
quired to store the LikirIds that have been issued in the past. Of course, the
CS is crucial for the security of the Likir network: for instance, an attacker
who steals the CS private key could generate Sybil nodes marked with arbitrary
Kademlia IDs, and for this reason the CS should be properly protected, as well
as a certification authority in a PKI.

4.2. API

Likir offers an essential but very powerful set of primitives in its interface
to applications. In particular, here we present an extended version of the three
main primitives defined in [37].

1. put(key, obj, type, public, ttl). It is the basic insertion primitive. It
lookups the DHT nodes responsible for storing objects marked with key

and puts the binding between key and obj in their storages. type is a string
denoting the application-specific type of the object and ttl determines the
expiration time of the content. The public parameter is a flag used to
determine the visibility of the published resource. If set to true, the object
will be downloadable by any peer in the network, otherwise proper access
control policies must be applied (see Section 5).

2. get(key, type, userId, recent, grant). Queries the DHT for content marked
with key. Only objects marked with a certain type, or belonging to a
user identified by userId could be retrieved. Please note that even if
an identity-based resource filtering could be implemented also in classical
DHT by attaching proper identity tags to published items, in Likir the
ownership of content is verifiable in a secure way thanks to certificates.
The recent boolean parameter allows to retrieve only the last published
version of the objects (e.g., a common strategy to release an update of
a content on a DHT is to publish a new version of the object with same
key and type). Finally, the user can specify a grant for the access to a
non-public resource; access control techniques are discussed in Section 5.

3. blacklist(userId). Adds the specified user to a local blacklist. Every new
incoming message from userId will be discarded; this is possible because
overlay interactions are authenticated in Likir. This operation is useful to
expunge misbehaving users from the network (see Section 5).

11

User

DHT

Put-get

}

}
}

Services

Overlay node

Widget

User Identity

Application logic

Services

Figure 1: Conceptual scheme of the LotusNet social network service

5. Architecture

Starting from the Likir platform, we define LotusNet, a framework for a
privacy-aware implementation of SNSs. In LotusNet, widgets are layered on
the p2p network and can interact by exchanging objects through the DHT.
The goal of LotusNet is to build higher-level functions upon Likir to realize the
requirement-driven OSN model defined in Section 3.

The API offered by the Likir middleware represents the first step toward
the goal, however we need to build higher-level functions upon it. The resulting
idea is depicted in Figure 1: a custom suite of widgets relies on a layer of social
network services, i.e., an extension of the DHT primitives offering higher-level
functionalities useful for OSNs. Such services are directly based on the API of
the overlay node, which encapsulates the identity management and authentica-
tion features. The DHT cloud is the primary medium for p2p communications.

In the following, we inspect the three main aspects that realize this idea.
First we present a general framework for widgets interaction and integration,
then we discuss in detail the access control facilities of our architecture and
finally we define a set of service modules that compose, together with the Likir
interface, the complete API for widgets. During the dissertation, we highlight
the architectural aspects that satisfy the requirements we defined in Section 3.
The detailed architecture of a Likir client is depicted in Figure 2; every element
of this scheme will be expounded in this Section and in the next one.

5.1. Basic interaction and integration

In classical DHT-based applications, like file-sharing (e.g., eMule), despite
the preliminary index-side filtering that storage nodes perform based on the
keywords specified in the search query, the content retrieval process usually
returns a big quantity of results that often contains several almost-equivalent

12

Likir node

Reputation
System

Tag Search
Engine

Certified User ID

Graphical User Interface

BLACKLIST PUT / GET

Widgets suite

FEEDBACK CONTACT

Friendship request
handling

}

Id
en

tity
m

a
n
a
g
em

en
t

A
p
p
lica

tio
n
 lo

g
ic

Notification
Module

DAC
Module }

S
ervices

REGISTER

Wid1 Wid2 Wid3 WidN...

}
REGISTER NOTIFY

PUTGET

SEARCHTAG GRANT

Figure 2: Architectural scheme of the LotusNet platform

versions of the same resource. This is perceived as an acceptable output by
the user, who simply selects the resource that best fits her needs among the
returned set in order to start the download.

The same situation leads to a completely different scenario in OSNs. In most
of the cases, OSN users search for specific resources that belong to people they
know yet (their “friends” or “contacts”). For this reason, they expect to receive
a very precise response to their queries; for example, a search for the last wall
post on my friend’s blog is not supposed to return the whole set of posts of that
person or the last wall updates of the whole list of the friends of mine.

Instead, a very sharp resource retrieval can be made with Likir thanks to
its filtering facilities. If all the filtering parameters are set in get, at most
one resource is returned, i.e., the most recent item published by the selected
owner for the specified key and type. This possibility allows to manage the
access to frequently updated information (e.g., user status modification). Two
relevant, unique aspects characterize this kind of filtering. First, the identity-
based filtering is performed in a fully verifiable way thanks to certificates paired
to the resources. Second, the whole filtering is made by index nodes, thus
relieving the local application from any filtering responsibility.

It is worth noticing that widgets are not forced to communicate exclusively
through the DHT and can establish direct connections if needed. In this case,
the distributed storage can be used for preliminary Diffie-Hellman exchange in
order to establish a secure out-of-band connection. Since the key agreement
protocol is performed on a fully authenticated layer, the new secure channel
will be also authenticated as well as encrypted.

Identity-based resource retrieval has a very good implication also on inte-
gration between different widgets. Since identity is managed at overlay level, all
the data published by the same node are marked with the same user identity,

13

regardless of the nature of the widget that generated the content. Furthermore,
suppose that widgets publish their API, describing the internal structure of the
items they manage together with the lookup keys and types associated to them;
this is a realistic assumption given the fact that publishing an application API
is a practice that is already adopted by the vast majority of Web 2.0 services.
Given such premises, integration becomes easy, because every widget can gather
and aggregate content from other different widgets owned by the known social
contacts just invoking a simple method.

As an illustrative example, suppose that users A and B use a social calendar
widget (WSC) and an instant messaging application (WIM). A very simple kind
of integration could be displaying A’s daily commitments in the B’s chat panel,
and vice versa. Supposing that the social calendar API is known, and that the
information is not protected by any kind of access control policy, you have to
call just a single operation in the chat code in order to retrieve the correct data
to display on the panel. In A’s client, for example, it will be the following:

obj = get(K(WSC), current date, B, true, none) (1)

where K(WSC) is the lookup key chosen by the calendar application and sup-
posing that the string representing the current date is the content type for the
commitments of the present day. Clearly, this mechanism can be extended to
any other kind of cross-application integration.

The extreme openness of this scheme, where every application can potentially
cooperate with any other module, rescues the OSN from the so called walled
garden problem. Paradoxically, in fact, even if the user information leaks from
centralized OSNs, trampling on the user privacy rights, it is often difficult to
share data between different OSNs or to reuse social applications in a profitable
way, due to the heterogeneity of the platforms or to narrow content manage-
ment policies [43]. Some centralized solutions, like the OpenId-compliant Global
Social Platform [44], have been proposed to overcome this problem, but with-
out receiving sufficient consensus so far. Instead, full decentralization and OSN
modularity allow to compose any kind of OSN as an arbitrary combination of
cooperating widgets and even many different OSNs can be linked together in
the same way.

5.2. Building the social graph: access control and contact discovery

We outlined a scenario of maximum interoperability, where every user can
potentially interact with any other and access the whole information stored in
the DHT. Even if this flexibility grants a very high level of customizability of the
OSN structure, it totally lacks privacy. In order to preserve privacy, the shared
information, which is potentially available to everyone must be channeled into
the communication pipes that participants create by establishing social ties. In
other words, we must model the social acquaintance graph that links together
OSN users and then limit the resource sharing only to the pairs of linked users.
Furthermore, users should be able to define with a fine granularity the portion

14

of the personal information that is shared with arbitrarily-defined groups of
neighbors.

Cryptographic access control techniques suitable for groups with dynamic
membership has been extensively studied in the literature, e.g., [45, 46]. In
particular, solutions based on key regression schemes manage the eviction of a
group member by redistributing to remaining members a new key that is used
to encrypt new items but that can be used as well to get the previous group
key. Under the assumption that a former member can have access to all the
data published before her exclusion from the group, a lazy revocation [47] policy
can be adopted: an old item is re-encrypted with the new key only when an
authorized member modifies it, thus avoiding the re-encryption of all the items
at every membership change.

Even if this strategy may be suitable in UNIX-like shared file systems, it
is too less flexible in a OSN context, for several reasons. First, since the vast
majority of items (e.g., posts, photos) which are shared in social network are
written once by their owner and never modified, lazy revocation is often not
applicable. Furthermore, even if, in principle, users formerly granted to access
the content could have saved it locally, we argue that preventing a user whose
grant is revoked to download the old data would be even a better guarantee for
privacy that would be appreciated by many users. Finally, the most important
point is that the mentioned key management techniques are not suitable for
overlapping groups, commonly used in OSNs: if an item is accessible by several
different groups it must be encrypted several times, thus greatly increasing the
complexity of keys and groups management.

To provide a more flexible access control we recur to signed grants to specify
permissions. Grants are associated with social contacts and not with shared
resources, so their number does not grow with the quantity of resources owned
or with the number of rules in the privacy policy. A grant certificate, produced
by a user A for a user B is composed as follows:

GrantA(B) = {A||B||regExp||expireT ime}SigA
(2)

It contains the identities of the owner and of the granted user, an expiration
time and a regular expression that is a compressed list of all the allowed content
types. The token is signed by the issuer.

Of course, grant certificates can be used if the entities that have the duty
to store the user data are able to verify the validity of the grant. The key idea
that allow grants in our setting is the use of authenticated channels for the
overlay communications. In fact, when an overlay index-node receives a request
for a protected resource, it can ask for a valid grant before returning it, being
able to securely verify if the identity of the querying peer is the same identity
specified inside the grant. Note that the index-node can check the signature
validity because, during the content insertion phase, the publisher’s LikirId,
which contains her public key, is sent along with the object. Finally, the regular
expression allows to specify permissions for an arbitrary subset of resource types.

In practice, the use of grants is made in the DHT API. As mentioned in
Section 4.2, Likir’s put primitive allows to specify if the stored resource requires

15

a permission to be accessed (parameter public = false), and the get function
takes a grant as a parameter.

Revocation of grants is implemented through expiration. The problem of
choosing a proper life span to balance best the grant renewal cost with the
maximum period during which a user with a revoked permission can still access
to a protected resource has not a single optimal solution. In a fully-customizable
framework, such duration should be chosen by the applications or even by the
user itself, depending on the trust he places on the granted friends. Anyway,
since the number of grant is limited by the number of contacts (that is quite
limited in the vast majority of cases), we suggest that short durations (e.g. one
week) can be used.

Grants are very flexible and powerful, but they do not hide published content
from the eyes of the index-nodes, that can mine their local storages as they wish,
even without a proper certificate. To shelter user information from this potential
privacy breach, content are encrypted. Please note that in this case encryption
does not imply a complex key management system. In fact, each participant
can use a single encryption key to protect the full set of its data; the key is
shared with the known contacts and it does not need to be replaced when the
access control policies change.

An access control mechanism based on grants associated to users, instead
on permissions attached to resources, draws implicitly the edges of the social
network. With grants, the social network topology should not be explicitly
mapped anywhere: the existence of a GrantAB means that a social tie has been
established between A and B. Of course, the nature of ties can differ depending
on the set of capabilities that the corresponding grant specifies. Besides, the
asymmetrical structure of grants allows to build both directed and undirected
social networks, depending on whether grants are reciprocated or not.

Implementation

In LotusNet, the Discretionary Access Control Module (DACM) is responsi-
ble for the management of the individual social connections and to set privacy
policies by assigning grants. The DACM is layered directly on the Likir node
and has a very simple behavior. At its startup, it creates a daemon listening on
a TCP port and puts its address on the DHT, using a lookup key extracted from
the user identifier. Then it enters in a passive state, waiting for incoming TCP
connections or for calls performed by local widgets. In particular, DACM’s API
to applications is the following:

contact(userId) (3)

grant(userId, regExp) (4)

getGrant(userId) (5)

getSelfGrant() (6)

16

When a widget W , in the user A’s application suite, wants to find a new friend
B, it calls contact(B)5. This method triggers a DHT lookup for B’s DACM
contact. If the contact is found, it means that B is on LotusNet. However, at this
stage, nothing else is known about B, not even the widgets he has installed on
its client. In order to determine if B is using widget W , the grant(B,^{W\.})
function is called6. Doing so, a direct message containing a grant certificate
for B is sent to B’s DACM; this is interpreted by B as a new incoming friend-
ship request. If the request is accepted, B reciprocates it by sending a proper
grant for A. An analogous interaction occurs between widgets for the periodical
renewal of grants.

For the sake of brevity, here we omit many less relevant implementation
details. For example, here A directly sends a grant to ask for B’s friendship, but
more complex interactions could be implemented as well. For example, A may
want to release the grant only if it will be reciprocated, or even more complex
transactions can occur. A very general framework for resources negotiations
which can be possibly applied to this case is described in [48].

The call of grant(userId,regExp) is used also to update the regular ex-
pression for a formerly granted user, in order to extend or reduce its permis-
sions; in this case, a new signed grant is produced to replace the old one. The
DACM stores in a local database both received and released grants. Meth-
ods getGrant(userId) and getSelfGrant() are used, respectively, to get
the grant received by a social contact from a local database and to obtain a
self-signed grant to access to the information stored by the local widget on the
DHT.

Just for completeness, we note that this API can be profitably extended
to manage grant distribution also to local widgets. If every widget is supplied
with a grant that contains only the minimal permissions that allow its correct
activity, trojan horse widgets are prevented to fetch private information stored
on the DHT by other widgets in the same application suite and spread it publicly
on the network without any permission.

5.3. Tuning the privacy level: lift up the walls

To show to what extent the privacy requirements listed in Section 3.1 are
satisfied by the LotusNet design, we discuss two attack scenarios whose main
actors are LotusNet users with two different roles.

In the first scenario, the attacker is a generic node that aims to disclose the
private information of a target user, from which she has not received any grant.
The attacker can query the index nodes that are supposed to store the tar-
get’s data, trying to find a breach in the access control mechanism. Supposing

5We suppose that B’s identifier is known. A specific indexing application for user searching
could be built, however this implies the disclosure of some personal information that are
revealed for indexing purposes (e.g. hometown, schools attended, etc.)

6We suppose that content types begin with the main widget’s name, that we assume to be
unique, followed by a dot. The regular expression is written in POSIX notation, and it means
“any string beginning with W.”

17

that index nodes behave correctly and properly follow access control protocol,
confidentiality trivially holds because peers without a proper grant cannot ac-
cess protected resources. Furthermore, supposing that index nodes return a
generic “content unavailable” message in response to unauthorized requests for
protected resources, an attacker cannot infer the type nor the index key of the
content stored by the target user; so, owner and activity privacy are satisfied.
Last, social interaction privacy is not breakable because the attacker cannot
learn what is the set of users that are granted to access the private content.

The attacker can also try to infer some information on the activity of the
target user by analyzing the incoming overlay network traffic. However, the
messages that the attacker can possibly receive from the target or from peers
interested in retrieving the victim’s data are just Likir lookup requests. Lookup
messages are used to locate the index nodes for a given item and their payload
contains only the DHT lookup key. This little information is not enough to
learn if the lookup requests are aimed to store or to retrieve a content, what
kind of content is looked up and who is the owner of that content.

In the latter scenario, the attacker is an index node and aims to disclose
private information from the content she stores and the incoming requests she
receives. Since stored information is encrypted, confidentiality holds, but the
other privacy requirements cannot be fully satisfied because they are in conflict
with the authenticated p2p communication that the Likir layer provides. In fact,
the index node knows the identity of the owner of every stored item because
of signed certificates (owner privacy), she is aware of the item types because
they are specified by the publisher in the put primitive for indexing purposes
(activity privacy), and she can log all the identities of the peers who make a
get request for a certain item, thus inferring social relations between the owner
of the requested content and every querier of that content (social interactions
privacy).

The second scenario confirms the intuition of conflicting OSN requirements
presented in Section 3.4: full privacy is not reachable if all the security and ser-
vice requirements are maintained. However, even in this case, LotusNet grants
a good level of privacy. In fact, since the location on the overlay is determined
by the Kademlia identifier inside the LikirId, a node cannot arbitrarily posi-
tion itself on the keyspace because the identifier is generated randomly by the
trusted CS. Being placed in a random overlay position, a malicious index node
cannot intercept the data belonging to a specific target user. Moreover, since
different widgets presumably use several different lookup keys to remotely store
their data, user data are randomly scattered on the DHT; therefore, recovering
the full information about a user is practically unfeasible for an attacker. In a
nutshell, the information held by a index node is little and fragmentary, there-
fore the risk of privacy infringement is very low and we believe that it can be
considered acceptable in most of the cases.

However, to reduce further the risk of privacy violation for information that
is particularly sensitive, LotusNet allows the tuning of the privacy level required
by the widgets. This can be done simply storing the sensitive data among a
set of trusted contacts specified by the user [17]. This approach is easy to

18

Privacy Security

Services Centralized OSN

LotusNet

LotusNet

Likir

DHT

Figure 3: Trade off between security, privacy and services in OSNs depicted as a walled lotus
garden. The Position of lotus flowers respect to the wall and the fence represent respectively
the privacy and security levels, while the height of the flowers represent the potential number
(and quality) of service that the user can benefit by sharing her data with others.

follow because in Likir it is easy to get the overlay ID from a known user ID
because they are permanently tied together by the signed LikirId. Practically,
a trivial customization of the Likir put and get primitives (put+ and get+

in the following) which allow to explicitly specify the list of index nodes that
are required to store/return the data is enough to implement this strategy. Of
course, in order to not disclose the sensitive information to untrusted peers,
index nodes must not apply the usual content dissemination policies for data
published with this customized put operation.

Exploiting this opportunity increases the privacy level while preserving all
the security properties of the Likir network, but at the cost of decreasing the
quality of service. First, trusted nodes may not be enough in number to grant
a good redundancy of the data and if uptime distributions are not very het-
erogeneous (which is likely if their geographical locations are very close), the
availability of data is partly compromised. Second, since trusted nodes will be
located in different regions of the overlay keyspace, the put+ operation should
perform a different lookup for every selected index node, thus slowing down
the data save. Symmetrically, the get+ operation executed by data consumers
should probably perform several lookups to locate at least one online trusted
index node, thus slowing down the search procedure. However, it is worth no-
tice that these drawbacks can be reasonably limited if the set of trusted peers
is selected among the users who are potential consumers of the data and if
this maximum privacy policy is applied only for resources with critical privacy
requirements.

Figure 3 depicts the trade-off between security, privacy and service require-

19

ments recurring to the metaphor of the garden recalled in Section 3.4; we
symbolically map different frameworks for OSN development on the three-
dimensional space, in order to compare them. Specifically, OSNs based on
classic DHTs can satisfy few privacy and security requirements and offer a min-
imal set of services; the security level is considerably higher if the Likir DHT
is used. LoutsNet benefits from the Likir security property and offers the op-
portunity to arbitrarily increase the privacy level from a minimum threshold
(all published items are public) to a level where everything is protected by ac-
cess control policies and content is stored at trusted peers; as stated before,
as privacy level is increased, the quality of service (in terms of both efficiency
of basic insertion/retrieval operation and of remote widgets that could benefit
from that hidden information) decreases. In any case, privacy in LotusNet is
always higher if compared to centralized social networks, since centralized SNS
providers hold the complete information about every user in the network.

6. Services: grow the garden

A OSN does not live of privacy alone. The success of a SNS platform is
mainly determined by the services it offers to users and applications. From our
point of view, ongoing projects on p2p OSNs have not yet focused enough on
the realization of complex social tools. In this Section we give a contribution
in this direction by defining three core services of the LotusNet architecture:
notifications, reputation management and high-level content indexing. The de-
fined services extend the basic Likir API with operations 3-11, thus offering a
high-level set of social primitives at the basis of the construction of complex
SNSs. The set of methods offered by the LotusNet interface is summarized in
Table 2.

6.1. Notifications

Social widgets can adopt synchronous and/or asynchronous protocols to
communicate, depending on the application logic. If synchronous interaction
between peers is needed (e.g., instant messaging application), it is reasonable to
think that the two endpoints establish a direct connection to manage the data
stream flowing in both directions. Conversely, asynchronous communications
(i.e., notifications) fit better applications that are quiescent most of the time
(e.g. wall posting service in OSNs); in this case, usually an always-online entity
stores the message and delivers it as soon as the target user is online.

When using an overlay for message exchange, notifications can be stored on
the DHT, but the pull-based approach at the basis of any DHT would force appli-
cations to continuously probe the network in search of new incoming messages.
Several publish-subscribe schemes for DHTs aimed at equipping the overlay net-
work layer with a push-based notification service has been proposed in the past
[49]. Solutions proposed in literature (e.g. [50, 51]) are very articulated and
include features like multicast communication, dynamic groups management,
continuous complex queries, and so on.

20

Here we use a simpler and lightweight unicast notification service that is
suitable for end-to-end notifications between social widgets. The idea is rooted
in the extreme precision that DHT routing algorithms have in locating the over-
lay node whose identifier is the nearest to the lookup key, even in presence of
a high churn rate. In particular, it has been shown that the Kademlia lookup
procedure is characterized by a very high precision [52]: regardless of the dis-
tance between the querier identifier and the target key, the set of replica nodes
located by the lookup contains the peer whose identifier is the nearest to the
target key with probability near to 1.

Since in Likir every peer has a fixed position on the keyspace, every user
can determine the exact overlay position of any of its friends. Notifications can
thus be easily implemented by sending put massages with a lookup key which is
equal to the Kademlia identifier of the user to be notified. Notification messages
can be easily distinguished from all the other overlay message received because
they are marked with a key which is exactly equal to the local node ID; since
the Kademlia keyspace has a cardinality of 2160, it is quite unlikely that random
messages are mistaken for proper notifications.

We extend the Likir API with the operation register(handle), that sim-
ply specifies an application handle to which all the notification messages are
passed. Furthermore, we introduce a Notification Module (NM) as a middle-
ware between DHT notifications and applications. The NM registers on the
Likir node as notification handler and offers two main methods to the widgets
above:

register(applicationName) (7)

notify(userId, applicationName, obj) (8)

Using register, widgets are notified with all the incoming messages marked by
the specified application type, while the notify operation sends an arbitrary
notification object, marked with the application type of the notifying widget,
to the target userId. The NM manages transparently the binding between
the userId and its corresponding Kademlia ID and probes the DHT at every
startup to search for missed notifications.

6.2. Folksonomic content search

A resource search engine is a central component in modern SNSs. Search
tools are used by OSN participants to expand their knowledge to thematic con-
texts that reside beyond their local social cluster. For this reason, we believe
that an effective instrument for content search cannot be left out of considera-
tion in p2p designs of OSNs if they are intended to be competitive with their
centralized counterparts.

In our framework, like in many other decentralized OSN designs, content en-
cryption is one of the means to obtain content confidentiality. Obfuscating data
enhances privacy but has also a negative side-effect on searching procedures. In
fact, any content-based resource indexing is not applicable if the structure of
shared objects is completely obscured by ciphers.

21

Certainly, encrypted objects can be found specifying their type and DHT
key in classic DHT lookups. This approach is effective as long as the entity
that initiates a search procedures is an automated application, that knows by
protocol the set of keys and types associated to the objects it has to insert or
retrieve from the overlay. But this system becomes too rigid when the search
query is submitted directly by a human user. In fact, DHT lookups are limited
to the well-known exact-match problem [53]: the knowledge of the exact lookup
key is required in order to retrieve the content from the distributed storage.

The straightforward solution adopted in most of the DHT applications, like
file sharing, is to compute the lookup key hashing the words of a representative
content name. Nevertheless, the name assigned to a resource by its publisher
may be insignificant to people that are interested in its retrieval and, in practice,
this approach hides many objects from their potential consumers.

A more suitable alternative comes from the collaborative tagging paradigm
brought into vogue by the Web 2.0 philosophy. In tagging systems, resources are
marked with arbitrary labels assigned directly by the users; the result is a corpus
of classifications called folksonomy in contrast with the taxonomical paradigm
of content categorization. Recurring to folksonomies is often necessary in very
populated collaborative systems because the extremely high and continuously
growing number of objects would make unfeasible for a team of experts to
perform a classification. Furthermore, it has also been shown that the overall
quality of the folksonomic indexing structure is comparable with the classic
taxonomies, in terms of accuracy, completeness and consistency [54].

For this reasons, we define a folksonomy-based search engine for our social
architecture. Given the distributed setting in which we are positioned, the
bindings between tags and resources are directly stored by the users in the DHT.
The idea is that a OSN user can mark a resource with a tag just publishing a
reference pointer to that resource (i.e., its DHT key and its type) using the hash
code of the assigned tag as lookup key. Subsequent searches for that tag will
return the set of resources labeled with it. It is worth noting that if indexed
resources are not public, a proper grant is anyway needed to get the content
referenced by the pointer.

In addition to the basic indexing feature, folksonomies can be exploited to
realize also a navigational paradigm of content search, where a user can drift
from a selected category to another based on the semantic correlation between
them. Examples of such paradigm can be found in classic query-based search
engines like Google Wonder Wheel [55] as well as in tag-based search engines
like Yahoo! Tag Explorer [56].

In folksonomic navigation, the most similar tags to the selected one are
returned to the querier at each step. Anytime, the user can choose to continue
the navigation or to retrieve the resources marked with the current (and with all
the previously selected) tag. Implementing this possibility in our architecture
implies to explicitly map the similarity relations between tags on the DHT.
In particular, in order to consistently maintain the information on the tag-tag
similarity graph over time and to efficiently manage the frequent addition of both
tags and indexed resources, we rely on the DHARMA approximated algorithm

22

we defined in [57]. In DHARMA, tag-tag similarity is based on the notion of
co-occurrence [58] (i.e., the similarity score between two tags is the number of
resources that the two tags label in common) and the update of similarity arcs is
managed with an approximated strategy that limit the cost of the both tagging
and navigation operations to a constant number of lookups.

As a result of these considerations, we can define a folksonomy-based search
engine layered on Likir together with its high-level API:

tag(label, obj) (9)

search(tag) (10)

The semantic of the operations is self explanatory. The search method returns
both the set of tags similar to the specified label and, of course, the set of tagged
resources.

6.3. Reputation management
Reputation is at the basis of many social dynamics, in real world as well as

in OSNs. Online market places, question and answer bulletin boards and fora
are just some examples in which reputation and trust play a key role in social
transactions and in the selection of reliable partners. Very often, reputation
is strongly context-dependent. For instance, a good photographer in a picture
sharing system could be a bad movie reviewer and vice versa. For this reason,
reputation systems are designed to operate within the boundaries of single ap-
plications and, typically, users are not represented with a single “karma” but
with many, possibly conflicting, reputations depending on the application they
are plunged in.

However, introducing a context-independent notion of reputation could play
a very important role in improving the service of collaborative p2p systems and
of social networks in particular. Spamming, phishing, frauds and trolling are
among the today’s most serious threats for the security and usability of SNSs.
Although these attacks are often made through the channels provided by single
applications, their particular gravity has repercussions not only on the context
of the application itself, but also on the quality of service of the underlying OSN:
a social platform which does not effectively filters spam or does not provide any
tool to detect fraudulent participants is indeed unreliable and, ultimately, not
attractive to the public.

In centralized OSNs, malicious users like spammers could be traced and
banned by the provider, which is able to detect anomalous behaviors since it
can monitor all the activity happening on the social network. Conversely, decen-
tralized OSNs should be complemented with a handle to spread the information
about misbehaving users that are detected by honest participants. In Lotus-
Net, even if independent services can be accessed through different widgets
installed in the application suite, the actions performed by a user in different
social contexts are always referable to its single identity, determined uniquely
by the LikirId. This feature allows to build a cross-application reputation sys-
tem, where a reputation is associated directly to the misbehaving peer and not
simply to a widget user.

23

The blacklist operation, offered by the Likir API, is meant to realize this
idea. Interactions with blacklisted users will be avoided at overlay level. This
means that any message or content, coming from any widgets belonging to the
blacklisted user, will be automatically discarded by Likir. When a appreciable
consensus is reached among the network, the misbehaving node will be not able
to interact with the majority of honest peers, thus being confined to a dead
network partition.

Relying on such low-level primitive, we can define a Reputation Module
(RM) in our architecture’s service layer. Its interface offers a single operation:

feedback(userId, score, proof) (11)

The idea is that an application can specify an evaluation on the behavior of a
known user with a numeric score. Together with that, a proof of the good/bad
behavior of the evaluated user can be stored by the RM . The proof is simply
the content for which its behavior is being evaluated; for example, in a generic
question and answers system, a post with inappropriate language can be an
evidence of user misbehavior. Note that, since the ownership of content pub-
lished on the DHT is verifiable, malicious users cannot forge fake proofs against
honest peers, thus avoiding social mobbing phenomena. When the reputation
score falls below a certain threshold, the bad user is locally banned using the
blacklist primitive.

Here we are not interested into define the details of a specific reputation
system (i.e., how scores are managed), also because different schemes can fit
better different types of OSNs (remind that several complex OSNs can coexist
in LotusNet). Several suitable reputation schemes that potentially suits our
context can be found in literature (e.g. [59]). Instead, the crucial point we want
to underline is that the reputation information can be securely spread across the
network thanks to proofs associated to users. Even a simple gossiping protocol
could be effective: when the RM blacklists a user, it sends the proofs of its bad
behavior to neighbors in the social networks that, in turn, can blacklist the same
identity too and forward the information to their neighbors. Since, due to the
small-world effect [60], the typical diameter of social networks is quite small,
the information is diffused in few hops across a great portion of the network,
thus rapidly excluding the malicious user from social activities.

The adopted approach has several advantages. First, our scheme strongly
contrasts the whitewashing phenomenon, thus limiting the risk that a user whose
reputation is stained in a social context can rejoin with a different identity or
can damage other systems where its identity is still unknown. Second, global
reputation makes very high the cost of any bad behavior, thus being a powerful
deterrent against malicious peers. Last, since in pure p2p OSNs single peers
take upon themselves the critical responsibility of storing data from other par-
ticipants, it is reasonable that malicious peers should be not trusted anymore to
store user data; information spreading techniques that are implemented at over-
lay level are able to transparently replicate the data stored by the blacklisted
user to another more reliable index node.

24

6.4. On storage service

Assuring content availability is one of the most important challenges in the
implementation of distributed SNSs. In our system, the DHT is intended to be
the main storage layer for items generated by LotusNet widgets. Availability,
lookup accuracy and efficient content dissemination are intrinsic properties of
DHT storage platforms. Well-known incentives mechanisms for DHT peers to
stay online [61, 62] can be applied to Likir as well. Moreover, note that Likir is
a general-purpose DHT which can simultaneously support many other services
beside LotusNet (e.g., classical file sharing); so, LotusNet clients could prof-
itably advantage also of the storage provided by DHT nodes that are not OSN
participants.

Many DHT-based utilities that complement the basic storage services with
more complex functionalities like durability or unlimited content size have been
presented in literature (e.g., [63]). We do not want to stuck on a specific storage
scheme, because different applications could have very different needs regarding
the storage. Instead, our aim is to define a flexible framework that offers a basic,
privacy-aware storage facility and that can be used as fundamental building
block to create more complex storage services without losing the property of
privacy-awareness.

This is accomplished with the use of grants. If the items published on the
DHT are used as pointers to external services, the same privacy mechanism that
combines grant-based access control with content encryption can be used. In
a nutshell, grants are self-contained entities that can be reused also in services
that are external to the DHT. The possibility of reusing grants preserves the
content confidentiality across different storage systems.

Of course, if the DHT is used as main mean of storage, non-stop availability
of data comes at the price of relying on untrusted storage servers, i.e., the index
nodes. Usually, this is not considered to be a good policy [64] unless basic se-
curity/privacy requirements like confidentiality, data integrity and authenticity
are satisfied [65]. We have shown that the LotusNet architecture transparently
satisfies such requirements by design and, additionally, DHT redundancy prop-
erty is a good shelter against denials of service like the smashing attack [64].
Moreover, like pointed out in Section 5.3, thanks to the strong binding between
overlay ID and user identity, LotusNet is flexible enough to allow widgets to
store their data at trusted index nodes, like the known friends, at cost of po-
tentially losing full-time availability.

7. Crawling attack

Previously in Section 5.3 we showed that a malicious entity cannot crawl the
DHT searching for private information and cannot even position probe nodes
on the overlay to intercept sensitive data. However, a weakness of this scheme
reside exactly in the delicate phase of creation of new contacts. Indeed, the
attacker can leverage the incautious behavior of some users inducing them to

25

Module Operation Description

Likir

put(key, obj, type, public, ttl) Publish an object on the DHT
get(key, type, userId, recent, grant) Retrieve an object from the

DHT
blacklist(userId) Put userId in a local blacklist

register() Register a handle for incoming
notifications

DAC

contact(userId) Search for userId in LotusNet
grant(userId, regExp) Issues a grant for userId for

types specified by regExp

getGrant(userId) Gets the grant received from
userId

getSelfGrant(userId) Gets a self-signed grant

Notification
register(applicationName) Register an application-specific

handle for incoming notifica-
tions

notify(userId, applicationName, obj) Send a notification to a specific
user and application

Tag Search
tag(label, obj) Tag the specified object
search(tag) Tag-based search. Return a set

of tags and a set of resources
Reputation feedback(userId, score, proof) Rate a user’s behavior

Table 2: Summary of the LotusNet services to applications

accept the attacker’s contact request and, consequently, to issue grants for it.
In this Section we want to show to what extent malicious peers can extract
user information from the network using this technique. Additionally, we pro-
pose further security expedients that could be adopted to improve the privacy
preservation also in this scenario.

We suppose that the attacker is a common peer that runs a crawling appli-
cation whose behavior is sketched by the pseudo-code in Algorithm 1. Basically,
the crawler starts from a seed user (lines 1-2), asking for its friendship and of-
fering in exchange a grant for the full set of its resources (lines 5-6). If the
request is accepted (line 7), the set of widgets specified in the received grant is
extracted (line 8). For each widget, all the accessible information is retrieved
from the DHT and possibly added to a local database (lines 9-10). The crawler
can also try to extract informations about target user’s friends directly from
the widgets’ data (line 11). The whole procedure is then repeated for the new
discovered contacts in a breadth-first fashion (lines 12,3,4).

Of course, extensive crawls must be executed by automatic procedures like
the crawling application described. For this reason, a first counterattack to limit
the effectiveness of crawls is recurring to a contact establishment procedure that
is resistant to robots. Requiring that both parties solve a puzzle which implies
human interaction (e.g., captchas [66]) before they can connect to each other
with a social tie is a very lightweight and inexpensive solution that can severely
limit this kind of attacks.

Apart from this consideration, if the target user is somehow tricked to issue a
grant for the attacker, a portion of its private information is inevitably disclosed.
The extent to which this happens is proportional to the level of trust that the

26

Algorithm 1: Crawler widget

Input : seed, a user identifier
List contacts = new List ()1

contacts.add (seed)2

while contacts not empty do3

String userId = contacts.pop ()4

contact (userId)5

grant (userId,“.*”)6

if grant received from userId then7

Set widgets = getWidgets (userId)8

for w in widgets do9

retrieveInformation (w)10

List newContacts = retrieveContacts (w)11

contacts.add (newContacts)12

target user places in the new friend. Here, two cases may occur.
In the first case, the attacker introduces herself with a user identifier that

recalls to the target node a person she knows already in real life (or in other
online social contexts). The belief of being interacting with a highly trusted
peer can lead the victim to disclose a high quantity of its personal information.
This problem can be mitigated by adopting some basic web-of-trust features
borrowed from the PGP setting. Users can produce special tokens for their
social contacts in order to certify the binding between the user and its identity.
When contacting a peer, a user exhibits its own identity certifications; since
link formation process in social networks often involves triadic closure [67] (i.e.,
people becoming friends have often at least one friend in common), it is likely
that the recipient of the friendship request directly knows some of the certifiers.
The absence of known certifiers should warn the user about a potential privacy
risk.

In the latter case, the attacker’s identity is completely new to the target
user. In this situation, the grants should be released gradually. To this end, a
profitable collaboration between the Reputation Module and the DAC Module
could be exploited, posing an upper bound to the permissions that can be is-
sued for a social contact according to its the reputation level. Afterward, the
growth of reputation in time determined by positive feedbacks received from
other known peers or from the local user may cause the expansion of the grant.

If all these countermeasures fail, can the attacker seize also the identifiers
of the victim’s social neighbors (line 11 in Algorithm 1)? Or, worse, can the
attacker retrieve also data belonging to its neighbors? We previously noticed
that the information about the user’s personal contact network is not explicitly
mapped anywhere, so the attacker may learn it only analyzing the resources
published by the widgets it has been granted the access to. Moreover, widgets
may often not require to store user identifiers explicitly. For example, in publish-
subscribe applications, where a user publishes updates for a group of followers,

27

there is no need to store the list of recipients together with the published data,
simply because the access to the content is managed using grants only.

However, even if the attacker succeeds in learning a part of the social network
topology, the most important thing is that the personal information of that
contacts cannot be unveiled, since the grants gained by the attacker are useful
to retrieve only the victim’s protected content. In order to access the information
of discovered friends, the attacker must reiterate the whole crawling procedure.

In this setting, considering all the countermeasures we presented, a crawl
of the p2p network aimed to data collection would be very costly and limited
to very inattentive users. Of course, the greatest defense ever against privacy
leakages is a continual user awareness.

8. Conclusions

An increasing awareness about issues on privacy of personal information in
centrally-managed Online Social Networks (OSNs) is strengthening among So-
cial Network Services (SNSs) users. In order to tackle this problem, we follow the
path traced by a recently-formed research community that proposed to migrate
SNSs on peer-to-peer (p2p) layers in order to escape the opaque management
of sensitive information performed by service providers.

We presented LotusNet, a new architectural scheme of a DHT-based OSN
that focuses on three strictly-interconnected aspects related to OSNs: security,
privacy and services. First, we showed that binding a user identity to both over-
lay nodes and published resources results in a enhancement of overlay network
robustness and allows to define a secure identity-based resource retrieval. Then,
using this identity-aware API, we shaped the structure of the SNS in terms of
services that our framework offers to custom social applications.

We provide confidentiality by assigning the access control responsibility to
overlay index-nodes. A content stored in the DHT is returned to the querier
only if a proper grant, signed by the its owner, is shown to the item keeper.
Flexibility of grants and the possibility to store data at trusted index nodes
allow the users to tune the desired privacy level for the activity around any
particular widget or resource. Furthermore, grants exchanged between peers
implicitly model the social network’s topology, facilitating the establishment of
new social contacts.

Besides access control, we define a set of core services useful for a wide range
of social applications. We propose an asynchronous notification service entirely
supported by the overlay layer, a tag-based search engine service to overwhelm
the exact-match lookup problem of structured p2p network, and a handle for
a reputation system intended to expel misbehaving users in a cross-application
fashion.

LoutusNet is the product of design choices that are agnostic with respect to
the layers above. We do not make any assumption on the structure of appli-
cations or messages that compose the SNS. As a result, we presented a social
framework that can host several, possibly interconnected SNSs thus creating

28

an environment without closed information silos. Also, the range of facilities
available is much wider respect to previous related works.

Likir, the overlay network we used, together with some of the core services
we defined, have been implemented in the form of a Java library [68]. The
LotusNet project activity will continue for both implementation and large-scale
experiments in a real-world setting.

References

[1] A. Ostrow, Social networking more popular than email, http://mashable.
com/2009/03/09/social-networking-more-popular-than-email

(March, 2009).

[2] A. Kazeniac, Facebook takes over top spot, Twit-
ter climbs, http://blog.compete.com/2009/02/09/

facebook-myspace-twitter-social-network (February, 2009).

[3] B. Krishnamurthy, C. E. Wills, On the leakage of personally identifiable
information via online social networks, in: WOSN ’09: Proceedings of the
2nd ACM workshop on Online social networks, ACM, New York, NY, USA,
2009, pp. 7–12. doi:http://doi.acm.org/10.1145/1592665.1592668.

[4] B. Krishnamurthy, C. E. Wills, Characterizing privacy in online so-
cial networks, in: WOSP ’08: Proceedings of the first workshop on
Online social networks, ACM, New York, NY, USA, 2008, pp. 37–42.
doi:http://doi.acm.org/10.1145/1397735.1397744.

[5] Facebook Inc., Social plugins and instant personalization, http://www.

facebook.com/help/?page=1068 (April, 2010).

[6] A. Felt, D. Evans, Privacy protection for social networking platforms, in:
Web 2.0 Security and Privacy 2008 (in conjunction with 2008 IEEE Sym-
posium on Security and Privacy), 2008.

[7] K. Opsahl, Facebook’s eroding privacy policy: a timeline, http://www.

eff.org/deeplinks/2010/04/facebook-timeline (April, 2010).

[8] R. Gross, A. Acquisti, Information revelation and privacy in online social
networks, in: WPES ’05: Proceedings of the 2005 ACM workshop on Pri-
vacy in the electronic society, ACM, New York, NY, USA, 2005, pp. 71–80.
doi:http://doi.acm.org/10.1145/1102199.1102214.

[9] We’re quitting Facebook, http://www.quitfacebookday.com (May, 2010).

[10] Web 2.0 suicide machine, http://suicidemachine.org (2010).

[11] D. Grippi, M. Salzberg, R. Sofaer, I. Zhitomirskiy, The diaspora project,
http://www.joindiaspora.com (2010).

29

[12] P. Antoniadis, B. L. Grand, Self-organised virtual communities; bridg-
ing the gap between web-based communities and P2P systems, Inter-
national Journal of Web Based Communities 5 (2) (2009) 179–194.
doi:http://dx.doi.org/10.1504/IJWBC.2009.023964.

[13] S. Buchegger, A. Datta, A Case for P2P Infrastructure for Social Networks -
Opportunities and Challenges, in: WONS’09: 6th International Conference
on Wireless On-demand Network Systems and Services, Snowbird, Utah,
USA, 2009.

[14] G. Urdaneta, G. Pierre, M. van Steen, A survey of DHT security tech-
niques, ACM Computing Surveyshttp://www.globule.org/publi/SDST\
_acmcs2009.html, to appear.

[15] H. Lundgren, R. Gold, E. Nordström, M. Wiggberg, A distributed instant
messaging architecture based on the Pastry peer-to-peer routing substrate,
in: SNCNW 2003, Swedish National Computer Networking Workshop,
Stockholm, 2003.

[16] S. Buchegger, D. Schiöberg, L. H. Vu, A. Datta, PeerSoN: P2P Social Net-
working - Early Experiences and Insights, in: SNS’09: 2nd ACM Workshop
on Social Network Systems, Nürnberg, Germany, 2009.

[17] L. A. Cutillo, R. Molva, T. Strufe, Leveraging social links for trust and
privacy in networks, in: INet Sec 2009. Open Research Problems in Network
Security. Zurich, Switzerland, 2009.

[18] L. A. Cutillo, R. Molva, T. Strufe, Privacy preserving social networking
through decentralization, in: WONS 2009, 6th International Conference
on Wireless On-demand Network Systems and Services, Snowbird, Utah,
USA, February 2-4, 2009.

[19] L. A. Cutillo, R. Molva, T. Strufe, Safebook: feasibility of transitive coop-
eration for privacy on a decentralized social network, in: AOC 2009, 3rd
IEEE International WoWMoM Workshop on Autonomic and Opportunistic
Communications, Kos, Greece, June 15, 2009.

[20] R. Narendula, T. G. Papaioannou, K. Aberer, Privacy-aware and highly-
available OSN profiles, in: COPS ’10: the 6th International Workshop
on Collaborative Peer-to-Peer Systems. In proceedings of WETICE 2010 :
19th IEEE International Workshops on Enabling Technologies: Infrastruc-
tures for Collaborative Enterprises, to appear.

[21] K. Graffi, P. Mukherjee, B. Menges, D. Hartung, A. Kovacevic, R. Stein-
metz, Practical security in p2p-based social networks, in: LCN’09: 34th
IEEE Conference on Local Computer Networks, 2009.

[22] S. Abbas, J. Pouwelse, D. Epema, H. Sips, A gossip-based distributed social
networking system, in: WETICE’09: 18th IEEE International Workshops

30

on Enabling Technologies. Groningen, Netherlands, IEEE Computer Soci-
ety, June 29 - July 1, 2009, pp. 93–98.

[23] J. A. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang, A. Iosup, D. H. J.
Epema, M. Reinders, M. R. van Steen, H. J. Sips, TRIBLER: a social-based
peer-to-peer system, Concurrency and Computation 20 (2) (2008) 127–138.
doi:http://dx.doi.org/10.1002/cpe.v20:2.

[24] A. Shakimov, A. Varshavsky, L. P. Cox, R. Cáceres, Privacy, cost, and
availability tradeoffs in decentralized osns, in: WOSN ’09: Proceedings of
the 2nd ACM workshop on Online social networks, ACM, New York, NY,
USA, 2009, pp. 13–18. doi:http://doi.acm.org/10.1145/1592665.1592669.

[25] S. Guha, K. Tang, P. Francis, Noyb: privacy in online social net-
works, in: WOSP ’08: Proceedings of the first workshop on On-
line social networks, ACM, New York, NY, USA, 2008, pp. 49–54.
doi:http://doi.acm.org/10.1145/1397735.1397747.

[26] A. Tootoonchian, K. K. Gollu, S. Saroiu, Y. Ganjali, A. Wolman, Lockr:
social access control for web 2.0, in: WOSP ’08: Proceedings of the first
workshop on Online social networks, ACM, New York, NY, USA, 2008, pp.
43–48. doi:http://doi.acm.org/10.1145/1397735.1397746.

[27] M. M. Lucas, N. Borisov, Flybynight: mitigating the privacy risks of social
networking, in: WPES ’08: Proceedings of the 7th ACM workshop on
Privacy in the electronic society, ACM, New York, NY, USA, 2008, pp.
1–8. doi:http://doi.acm.org/10.1145/1456403.1456405.

[28] R. Baden, A. Bender, N. Spring, B. Bhattacharjee, D. Starin, Per-
sona: an online social network with user-defined privacy, in: SIG-
COMM ’09: Proceedings of the ACM SIGCOMM 2009 conference on
Data communication, ACM, New York, NY, USA, 2009, pp. 135–146.
doi:http://doi.acm.org/10.1145/1592568.1592585.

[29] J. Anderson, C. Diaz, J. Bonneau, F. Stajano, Privacy-enabling social net-
working over untrusted networks, in: WOSN ’09: Proceedings of the 2nd
ACM workshop on Online social networks, ACM, New York, NY, USA,
2009, pp. 1–6. doi:http://doi.acm.org/10.1145/1592665.1592667.

[30] L. Fang, K. LeFevre, Privacy wizards for social networking sites,
in: WWW ’10: Proceedings of the 19th international conference on
World wide web, ACM, New York, NY, USA, 2010, pp. 351–360.
doi:http://doi.acm.org/10.1145/1772690.1772727.

[31] Facebook Inc., Terms of use, http://www.facebook.com/terms.php

(April, 2010).

[32] L. M. Aiello, G. Ruffo, Secure and flexible framework for decentralized
social network services, in: Proceedings of SESOC ’10: Security and Social
Networking Workshop, IEEE Computer Society, 2010.

31

[33] L. Getoor, C. P. Diehl, Link mining: a survey, ACM
SIGKDD Explorations Newsletter 7 (2) (2005) 3–12.
doi:http://doi.acm.org/10.1145/1117454.1117456.

[34] T. N. Jagatic, N. A. Johnson, M. Jakobsson, F. Menczer, So-
cial phishing, Communications of the ACM 50 (10) (2007) 94–100.
doi:http://doi.acm.org/10.1145/1290958.1290968.

[35] L. Bilge, T. Strufe, D. Balzarotti, E. Kirda, All your contacts are
belong to us: automated identity theft attacks on social networks,
in: WWW ’09: Proceedings of the 18th international conference on
World wide web, ACM, New York, NY, USA, 2009, pp. 551–560.
doi:http://doi.acm.org/10.1145/1526709.1526784.

[36] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, S. Lim, A Survey and Com-
parison of Peer-to-Peer Overlay Network Schemes, IEEE Communications
Surveys and Tutorials 7 (2005) 72–93.

[37] L. M. Aiello, M. Milanesio, G. Ruffo, R. Schifanella, Tempering Kademlia
with a robust identity based system, in: P2P’08: 8th International Confer-
ence on Peer-to-Peer Computing, IEEE Computer Society, 2008, pp. 30–39.
doi:http://dx.doi.org/10.1109/P2P.2008.40.

[38] P. Maymounkov, D. Mazières, Kademlia: A peer-to-peer information sys-
tem based on the XOR metric, in: IPTPS ’02: 1st International Workshop
on Peer-to-Peer Systems, 2002, pp. 53–65.

[39] E. Sit, R. Morris, Security considerations for peer-to-peer distributed hash
tables, in: IPTPS ’01: Revised Papers from the First International Work-
shop on Peer-to-Peer Systems, Springer-Verlag, London, UK, 2002, pp.
261–269.

[40] J. Douceur, The sybil attack, in: IPTPS ’02: 1st International Workshop
on Peer-to-Peer Systems, 2002.

[41] A. Singh, T. W. Ngan, P. Druschel, D. Wallach, Eclipse attacks on overlays:
Threats and defenses, in: InfoCom ’06: 25th Conference on Computer
Communications, IEEE Computer Society, 2006.

[42] F. Lesueur, L. Mè, V. Viet Triem Tong, An Efficient Distributed PKI for
Structured P2P Networks, in: P2P’09: 9th International Conference on
Peer-to-Peer Computing, IEEE Computer Society, 2009.

[43] C. M. A. Yeung, I. Liccardi, K. Lu, O. Seneviratne, T. Berners-Lee, Decen-
tralization: The Future of Online Social Networking, in: W3C Workshop
on the Future of Social Networking, 2009.

[44] M. Mostarda, D. Palmisano, F. Zani, S. Tripodi, Towards an OpenID-
based solution to the Social Network Interoperability problem, in: W3C
Workshop on the Future of Social Networking, 2009.

32

[45] K. Fu, S. Kamara, T. Kohno, Key regression: Enabling efficient key distri-
bution for secure distributed storage, in: NDSS’06: Proceedings of Network
and Distributed Systems Security Symposium, 2006.

[46] K. E. Fu, R. L. Rivest, Group sharing and random access in cryptographic
storage file systems, Tech. rep., Masters thesis, MIT (1999).

[47] M. Backes, C. Cachin, A. Oprea, Lazy revocation in cryptographic file sys-
tems, in: SISW’05: Proceedings of the Third IEEE International Security
in Storage Workshop, 2005.

[48] A. C. Squicciarini, F. Paci, E. Bertino, A. Trombetta, S. Braghin,
Group-based negotiations in p2p systems, IEEE Transac-
tions on Parallel and Distributed Systems 99 (PrePrints).
doi:http://doi.ieeecomputersociety.org/10.1109/TPDS.2010.25.

[49] M. Bender, S. Michel, S. Parkitny, G. Weikum, A comparative study of
pub/sub methods in structured p2p networks, in: Databases, Information
Systems, and Peer-to-Peer Computing, Springer, 2006, pp. 385–396.

[50] A. I. T. Rowstron, A.-M. Kermarrec, M. Castro, P. Druschel, Scribe: The
design of a large-scale event notification infrastructure, in: Networked
Group Communication, Springer, 2001, pp. 30–43.

[51] J. Kannan, B. Yang, S. Shenker, P. Sharma, S. Banerjee, S. Basu, S.-J.
Lee, SmartSeer: Using a DHT to process continuous queries over peer-to-
peer networks, in: INFOCOM ’06 : 25th IEEE International Conference
on Computer Communications, IEEE Communications Society, 2006.

[52] T. Cholez, I. Chrisment, O. Festor, Efficient DHT attack mitigation
through peers’ ID distribution, in: HOT-P2P ’10 : 7th International Work-
shop on Hot Topics in Peer-to-Peer Systems, IEEE press, 2010.

[53] M. Harren, J. M. Hellerstein, R. Huebsch, B. T. Loo, S. Shenker, I. Sto-
ica, Complex queries in dht-based peer-to-peer networks, in: IPTPS ’01:
Revised Papers from the First International Workshop on Peer-to-Peer Sys-
tems, Springer-Verlag, London, UK, 2002, pp. 242–259.

[54] P. Heymann, A. Paepcke, H. Garcia-Molina, Tagging human knowledge,
in: WSDM ’10: Proceedings of the third ACM international conference on
Web search and data mining, ACM, New York, NY, USA, 2010, pp. 51–60.
doi:http://doi.acm.org/10.1145/1718487.1718495.

[55] Google Wonder Wheel explained, http://www.googlewonderwheel.com

(2009).

[56] Yahoo! Tag Explorer, http://tagexplorer.sandbox.yahoo.com (2008).

33

[57] L. M. Aiello, M. Milanesio, G. Ruffo, R. Schifanella, Tagging with
DHARMA, a DHT-based Approach for Resource Mapping through Ap-
proximation, in: HOT-P2P ’10 : 7th International Workshop on Hot Topics
in Peer-to-Peer Systems, IEEE press, 2010.

[58] B. Markines, C. Cattuto, F. Menczer, D. Benz, A. Hotho, G. Stumme,
Evaluating similarity measures for emergent semantics of social tagging,
in: WWW ’09: 18th World Wide Web conference, 2009.

[59] M. Srivatsa, L. Xiong, L. Liu, TrustGuard: countering vulnerabilities in
reputation management for decentralized overlay networks, in: WWW
’05: 14th international conference on World Wide Web, 2005, pp. 422–431.
doi:http://doi.acm.org/10.1145/1060745.1060808.

[60] D. J. Watts, S. H. Strogatz, Collective dynamics of ‘small-world’ networks,
Nature 393 (6684) (1998) 440–442.
URL http://dx.doi.org/10.1038/30918

[61] B. Yu, P. M. Singh, Incentive mechanisms for peer-to-peer systems, in:
Second International Workshop on Agents and Peer-to-Peer Computing,
2003, pp. 77–88.

[62] K. G. Anagnostakis, F. C. Harmantzis, S. Ioannidis, M. Zghaibeh, On the
impact of practical p2p incentive mechanisms on user behavior, Tech. rep.,
NET Institute (2006).

[63] A. Rowstron, P. Druschel, Storage management and caching in
past, a large-scale, persistent peer-to-peer storage utility, ACM
SIGOPS Operating Systems Review 35 (5) (2001) 188–201.
doi:http://doi.acm.org/10.1145/502059.502053.

[64] D. Mazieres, Don’t trust your file server, in: HOTOS ’01: Proceedings of
the Eighth Workshop on Hot Topics in Operating Systems, IEEE Computer
Society, Washington, DC, USA, 2001, p. 113.

[65] E.-J. Goh, H. Shacham, N. Modadugu, D. Boneh, Sirius: Securing remote
untrusted storage, in: NDSS’03: Internet Society (ISOC) Network and
Distributed Systems Security Symposium, 2003, pp. 131–145.

[66] L. von Ahn, B. Maurer, C. Mcmillen, D. Abraham, M. Blum, reCAPTCHA:
Human-Based Character Recognition via Web Security Measures, Science
321 (5895) (2008) 1465–1468.

[67] D. Romero, J. Kleinberg, The directed closure process in hybrid social-
information networks, with an analysis of link formation on twitter, in:
AIII ’10 : Proceedings of 4th International AAAI Conference on Weblogs
and Social Media, 2010.

[68] Likir official website, http://likir.di.unito.it (2010).

34

